精英家教网 > 高中数学 > 题目详情
设A>0,ω>0,0≤?<2π,函数f(x)=Asin(ωx+?),g(x)=Asin(2ωx+?),则函数f(x)在区间(
π
3
π
2
)
内为增函数是函数g(x)在区间(
π
6
π
4
)
内为增函数的(  )
A、既不充分也不必要条件
B、充分不必要条件
C、必要不充分条件
D、充分必要条件
分析:根据f(x)=Asin(ωx+?)在区间(
π
3
π
2
)
内为增函数,结合A>0,ω>0,0≤?<2π,判断f(x)=Asin(ωx+?)中ω、φ的范围,再根据g(x)=Asin(2ωx+?),在区间(
π
6
π
4
)
内为增函数,判断g(x)=Asin(2ωx+?),中ω、φ的范围,最后根据充要条件定义得到结论.
解答:解:∵A>0,ω>0,0≤?<2π,
∴当f(x)=Asin(ωx+?)在区间(
π
3
π
2
)
内为增函数时,
-
π
2
π
3
ω+φ<
π
2
ω+φ≤
π
2

即:-
π
2
π
6
•2ω+φ<
π
4
•2ω+φ≤
π
2

即g(x)=Asin(2ωx+?)在区间(
π
6
π
4
)
内为增函数
即函数f(x)在区间(
π
3
π
2
)
内为增函数是函数g(x)在区间(
π
6
π
4
)
内为增函数的充分条件,
反之函数g(x)在区间(
π
6
π
4
)
内为增函数
即:-
π
2
π
6
•2ω+φ<
π
4
•2ω+φ≤
π
2

-
π
2
π
3
ω+φ<
π
2
ω+φ≤
π
2

f(x)=Asin(ωx+?)在区间(
π
3
π
2
)
内也为增函数
即函数f(x)在区间(
π
3
π
2
)
内为增函数是函数g(x)在区间(
π
6
π
4
)
内为增函数的必要条件,
故函数f(x)在区间(
π
3
π
2
)
内为增函数是函数g(x)在区间(
π
6
π
4
)
内为增函数的充分必要条件
故选:D
点评:本题考查的知识点是必要条件、充分条件与充要条件的判断,判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合Sn={X|X=(x1,x2,…,xn),x1∈{0,1},i=1,2,…,n}(n≥2)对于A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定义A与B的差为A-B=(|a1-b1|,|a2-b2|,…|an-bn|);
A与B之间的距离为d(A,B)=
i-1
 |a1-b1|

(Ⅰ)当n=5时,设A=(0,1,0,0,1),B=(1,1,1,0,0),求d(A,B);
(Ⅱ)证明:?A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);
(Ⅲ)证明:?A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于数列A:a1,a2,…,an,若满足ai∈{0,1}(i=1,2,3,…,n),则称数列A为“0-1数列”.定义变换T,T将“0-1数列”A中原有的每个1都变成0,1,原有的每个0都变成1,0.例如A:1,0,1,则T(A):0,1,1,0,0,1.设A0是“0-1数列”,令Ak=T(Ak-1),k=1,2,3,…
(1)若数列A2:1,0,0,1,0,1,1,0,1,0,0,1.则数列A0
1,0,1
1,0,1

(2)若A0为0,1,记数列Ak中连续两项都是0的数对个数为lk,k=1,2,3,…,则l2n关于n的表达式.是
l2n=
1
3
(4n-1)
l2n=
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于数列A:a1,a2,…,an,若满足ai∈{0,1}(i=1,2,3,…,n),则称数列A为“0-1数列”.定义变换T,T将“0-1数列”A中原有的每个1都变成0,1,原有的每个0都变成1,0.例如A:1,0,1,则T(A):0,1,1,0,0,1.设A0是“0-1数列”,令Ak=T(Ak-1),k=1,2,3,…
(Ⅰ) 若数列A2:1,0,0,1,0,1,1,0,1,0,0,1.求数列A1,A0
(Ⅱ) 若数列A0共有10项,则数列A2中连续两项相等的数对至少有多少对?请说明理由;
(Ⅲ)若A0为0,1,记数列Ak中连续两项都是0的数对个数为lk,k=1,2,3,…求lk关于k的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a(0<a<1)是给定的常数,f(x)是R上的奇函数,且在(0,+∞)上是增函数,若f(
1
2
)=0
,f(logat)>0,则t的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:0107 模拟题 题型:解答题

对于数列A:a1,a2,…,an,若满足ai∈{0,1}(i=1,2,3,…,n),则称数列A为“0-1数列”。定义变换T,T将"0-1数列"A中原有的每个1都变成0,1,原有的每个0都变成1,0;例如A:1,0,1,则T(A):0,1,1,0,0,1。设A0是"0-1数列",令Ak=T(Ak-1),k=1,2,3,…,
(Ⅰ)若数列A2:1,0,0,1,0,1,1,0,1,0,0,1,求数列A1,A0
(Ⅱ)若数列A0共有10项,则数列A2中连续两项相等的数对至少有多少对?请说明理由;
(Ⅲ)若A0为0,1,记数列Ak中连续两项都是0的数对个数为lk,k=1,2,3,…,求lk关于k的表达式。

查看答案和解析>>

同步练习册答案