ÒÑÖª¼¯ºÏSn={X|X=£¨x1£¬x2£¬¡­£¬xn£©£¬x1¡Ê{0£¬1}£¬i=1£¬2£¬¡­£¬n}£¨n¡Ý2£©¶ÔÓÚA=£¨a1£¬a2£¬¡­an£¬£©£¬B=£¨b1£¬b2£¬¡­bn£¬£©¡ÊSn£¬¶¨ÒåAÓëBµÄ²îΪA-B=£¨|a1-b1|£¬|a2-b2|£¬¡­|an-bn|£©£»
AÓëBÖ®¼äµÄ¾àÀëΪd(A£¬B)=
i-1
 |a1-b1|

£¨¢ñ£©µ±n=5ʱ£¬ÉèA=£¨0£¬1£¬0£¬0£¬1£©£¬B=£¨1£¬1£¬1£¬0£¬0£©£¬Çód£¨A£¬B£©£»
£¨¢ò£©Ö¤Ã÷£º?A£¬B£¬C¡ÊSn£¬ÓÐA-B¡ÊSn£¬ÇÒd£¨A-C£¬B-C£©=d£¨A£¬B£©£»
£¨¢ó£©Ö¤Ã÷£º?A£¬B£¬C¡ÊSn£¬d£¨A£¬B£©£¬d£¨A£¬C£©£¬d£¨B£¬C£©Èý¸öÊýÖÐÖÁÉÙÓÐÒ»¸öÊÇżÊý£®
·ÖÎö£º£¨¢ñ£©ÓÉÌâÒâÖеĶ¨ÒåºÍ¼¯ºÏA¡¢BÇó³öA-B£¬ÔÙÓÉAÓëBÖ®¼äµÄ¾àÀ빫ʽd(A£¬B)=
i-1
 |a1-b1|
£¬Çó³öd£¨A£¬B£©£»
£¨¢ò£©¸ù¾ÝÌâÒâÉè³ö¼¯ºÏA¡¢B¡¢C£¬Ôòai£¬bi£¬ci¡Ê{0£¬1}£¨i=1£¬2£¬n£©£¬¹ÊµÃA-B¡ÊSn£¬ÔÙ·Öci=0ºÍci=1Á½ÖÖÇé¿öÇó³öd£¨A-C£¬B-C£©ºÍd£¨A£¬B£©£»
£¨¢ó£©¸ù¾ÝÌâÒâÉè³ö¼¯ºÏA¡¢B¡¢C£¬ÔÙ¸ù¾Ý£¨¢ò£©µÄ½áÂÛ£¬±íʾ³öd£¨A£¬B£©£¬d£¨A£¬C£©£¬d£¨B£¬C£©£¬ÔÙ¸ù¾Ý¼¯ºÏµÄÔªËØΪ¡°0£¬1¡±£¬È·¶¨ËùÇóÈý¸öÊýÖÐÖÁÉÙÓÐÒ»¸öÊÇżÊý£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÒâµÃ£¬A-B=£¨|0-1|£¬|1-1|£¬|0-1|£¬|0-0|£¬|1-0|£©=£¨1£¬0£¬1£¬0£¬1£©£¬
d£¨A£¬B£©=|0-1|+|1-1|+|0-1|+|0-0|+|1-0|=3
£¨¢ò£©Ö¤Ã÷£ºÉèA=£¨a1£¬a2£¬an£©£¬B=£¨b1£¬b2£¬bn£©£¬C=£¨c1£¬c2£¬cn£©¡ÊSn
ÒòΪa1£¬b1¡Ê{0£¬1}£¬ËùÒÔ|a1-b1|¡Ê{0£¬1}£¨i=1£¬2£¬n£©
´Ó¶øA-B=£¨|a1-b1|£¬|a2-b2|£¬|an-bn|£©¡ÊSn
ÓÉÌâÒâÖªai£¬bi£¬ci¡Ê{0£¬1}£¨i=1£¬2£¬n£©
µ±ci=0ʱ£¬||ai-ci|-|bi-ci||=|ai-bi|
µ±ci=1ʱ£¬||ai-ci|-|bi-ci||=|£¨1-ai£©-£¨1-bi£©|=|ai-bi|
ËùÒÔd(A-C£¬B-C)=
n
i=1
|ai-bi|=d(A£¬B)

£¨¢ó£©Ö¤Ã÷£ºÉèA=£¨a1£¬a2£¬an£©£¬B=£¨b1£¬b2£¬bn£©£¬C=£¨c1£¬c2£¬cn£©¡ÊSn£¬
d£¨A£¬B£©=k£¬d£¨A£¬C£©=l£¬d£¨B£¬C£©=h
¼Ç0=£¨0£¬0£¬0£©¡ÊSn£¬
ÓÉ£¨¢ò£©¿ÉÖª
d(A£¬B)=d(A-A£¬B-A)=d(0£¬B-A)=k
d(A£¬C)=d(A-A£¬C-A)=d(0£¬C-A)=l
d(B£¬C)=d(B-A£¬C-A)=h

ËùÒÔ|bi-ai|£¨i=1£¬2£¬n£©ÖÐ1µÄ¸öÊýΪk£¬|ci-ai|£¨i=1£¬2£¬n£©ÖÐ1µÄ¸öÊýΪl
ÉètÊÇʹ|bi-ai|=|ci-ai|=1³ÉÁ¢µÄiµÄ¸öÊý£®Ôòh=l+k-2t
ÓÉ´Ë¿ÉÖª£¬k£¬l£¬hÈý¸öÊý²»¿ÉÄܶ¼ÊÇÆæÊý
¼´d£¨A£¬B£©£¬d£¨A£¬C£©£¬d£¨B£¬C£©Èý¸öÊýÖÐÖÁÉÙÓÐÒ»¸öÊÇżÊý£®
µãÆÀ£º±¾Ì⿼²éÁËÀûÓÃж¨ÒåºÍ¼¯ºÏµÄÔËËãÐÔÖÊ×ÛºÏÓ¦ÓõÄÄÜÁ¦£¬ÊôÓÚ¸ßÄѶÈÌ⣬ÐèÒªÈÏÕæÉóÌ⣬ץסж¨ÒåµÄ±¾ÖÊ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏSn={X|X=£¨x1£¬x2£¬¡­£¬xn£©£¬xi¡Ê{0£¬1}£¬i=1£¬2£¬¡­£¬n}£¨n¡Ý2£©¶ÔÓÚA=£¨a1£¬a2£¬¡­an£¬£©£¬B=£¨b1£¬b2£¬¡­bn£¬£©¡ÊSn£¬¶¨ÒåAÓëBµÄ²îΪA-B=£¨|a1-b1|£¬|a2-b2|£¬¡­|an-bn|£©£»
AÓëBÖ®¼äµÄ¾àÀëΪd(A£¬B)=
n
i=1
|ai-bi|

£¨¢ñ£©Ö¤Ã÷£º?A£¬B£¬C¡ÊSn£¬ÓÐA-B¡ÊSn£¬ÇÒd£¨A-C£¬B-C£©=d£¨A£¬B£©£»
£¨¢ò£©Ö¤Ã÷£º?A£¬B£¬C¡ÊSn£¬d£¨A£¬B£©£¬d£¨A£¬C£©£¬d£¨B£¬C£©Èý¸öÊýÖÐÖÁÉÙÓÐÒ»¸öÊÇżÊý
£¨¢ó£©ÉèP⊆Sn£¬PÖÐÓÐm£¨m¡Ý2£©¸öÔªËØ£¬¼ÇPÖÐËùÓÐÁ½ÔªËؼä¾àÀëµÄƽ¾ùֵΪ
.
d
(P)
£®
Ö¤Ã÷£º
.
d
(P)
¡Ü
mn
2(m-1)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•»³»¯ÈýÄ££©ÒÑÖª¼¯ºÏSn={X|X=£¨x1£¬x2£¬¡­£¬xn£©£¬xi¡ÊN*£¬i=1£¬2£¬¡­£¬n}£¨n¡Ý2£©£®¶ÔÓÚA=£¨a1£¬a2£¬¡­an£©¡ÊSn£¬B=£¨b1£¬b2£¬¡­£¬bn£©¡ÊSn£¬AÓëBÖ®¼äµÄ¾àÀëΪd£¨A£¬B£©=
ni=1
|ai-bi|
£®
£¨1£©µ±n=5ʱ£¬ÉèA=£¨1£¬2£¬1£¬2£¬a5£©£¬B=£¨2£¬4£¬2£¬1£¬3£©£®Èôd£¨A£¬B£©=7£¬Ôòa5
=1»ò5
=1»ò5
£»
£¨2£©¼ÇI=£¨1£¬1£¬¡­£¬1£©¡Êsn£®ÈôA¡¢B¡ÊSn£¬ÇÒd£¨I£¬A£©=d£¨I£¬B£©=P£¬Ôòd£¨A£¬B£©µÄ×î´óֵΪ
2P
2P
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Î÷³ÇÇøһģ£©ÒÑÖª¼¯ºÏSn={X|X=(x1£¬x2£¬¡­£¬xn)£¬xi¡ÊN*£¬i=1£¬2£¬¡­£¬n} (n¡Ý2)£®¶ÔÓÚA=£¨a1£¬a2£¬¡­£¬an£©£¬B=£¨b1£¬b2£¬¡­£¬bn£©¡ÊSn£¬¶¨Òå
AB
=(b1-a1£¬b2-a2£¬¡­£¬bn-an)
£»¦Ë£¨a1£¬a2£¬¡­£¬an£©=£¨¦Ëa1£¬¦Ëa2£¬¡­£¬¦Ëan£©£¨¦Ë¡ÊR£©£»AÓëBÖ®¼äµÄ¾àÀëΪd(A£¬B)=
n
i=1
|ai-bi|
£®
£¨¢ñ£©µ±n=5ʱ£¬ÉèA=£¨1£¬2£¬1£¬2£¬a5£©£¬B=£¨2£¬4£¬2£¬1£¬3£©£®Èôd£¨A£¬B£©=7£¬Çóa5£»
£¨¢ò£©£¨¢¡£©Ö¤Ã÷£ºÈôA£¬B£¬C¡ÊSn£¬ÇÒ?¦Ë£¾0£¬Ê¹
AB
=¦Ë
BC
£¬Ôòd£¨A£¬B£©+d£¨B£¬C£©=d£¨A£¬C£©£»
£¨¢¢£©ÉèA£¬B£¬C¡ÊSn£¬ÇÒd£¨A£¬B£©+d£¨B£¬C£©=d£¨A£¬C£©£®ÊÇ·ñÒ»¶¨?¦Ë£¾0£¬Ê¹
AB
=¦Ë
BC
£¿ËµÃ÷ÀíÓÉ£»
£¨¢ó£©¼ÇI=£¨1£¬1£¬¡­£¬1£©¡ÊSn£®ÈôA£¬B¡ÊSn£¬ÇÒd£¨I£¬A£©=d£¨I£¬B£©=p£¬Çód£¨A£¬B£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Î÷³ÇÇøһģ£©ÒÑÖª¼¯ºÏSn={X|X=(x1£¬x2£¬¡­£¬xn)£¬xi¡ÊN*£¬i=1£¬2£¬¡­£¬n} (n¡Ý2)£®¶ÔÓÚA=£¨a1£¬a2£¬¡­£¬an£©£¬B=£¨b1£¬b2£¬¡­£¬bn£©¡ÊSn£¬¶¨Òå
AB
=(b1-a1£¬b2-a2£¬¡­£¬bn-an)
£»¦Ë£¨a1£¬a2£¬¡­£¬an£©=£¨¦Ëa1£¬¦Ëa2£¬¡­£¬¦Ëan£©£¨¦Ë¡ÊR£©£»AÓëBÖ®¼äµÄ¾àÀëΪd(A£¬B)=
n
i=1
|ai-bi|
£®
£¨¢ñ£©µ±n=5ʱ£¬ÉèA=£¨1£¬2£¬1£¬2£¬5£©£¬B=£¨2£¬4£¬2£¬1£¬3£©£¬Çód£¨A£¬B£©£»
£¨¢ò£©Ö¤Ã÷£ºÈôA£¬B£¬C¡ÊSn£¬ÇÒ?¦Ë£¾0£¬Ê¹
AB
=¦Ë
BC
£¬Ôòd£¨A£¬B£©+d£¨B£¬C£©=d£¨A£¬C£©£»
£¨¢ó£©¼ÇI=£¨1£¬1£¬¡­£¬1£©¡ÊS20£®ÈôA£¬B¡ÊS20£¬ÇÒd£¨I£¬A£©=d£¨I£¬B£©=13£¬Çód£¨A£¬B£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸