精英家教网 > 高中数学 > 题目详情
(2013•西城区一模)已知集合Sn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).对于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定义
AB
=(b1-a1b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A与B之间的距离为d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)当n=5时,设A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5
(Ⅱ)(ⅰ)证明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,则d(A,B)+d(B,C)=d(A,C);
(ⅱ)设A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C).是否一定?λ>0,使
AB
BC
?说明理由;
(Ⅲ)记I=(1,1,…,1)∈Sn.若A,B∈Sn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.
分析:(Ⅰ)由于A=(1,2,1,2,a5),B=(2,4,2,1,3),利用d(A,B)=
5
i=1
|ai-bi|
=7即可求得求a5
(Ⅱ)(ⅰ)设A=(a1,a2,…,an),B=(b1,b2,…,bn),C=(c1,c2,…,cn),依题意可求得 bi-ai与ci-bi(i=1,2,…,n)同为非负数或同为负数,从而可证得结论;
(ⅱ)设A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C)不一定?λ>0,使
AB
BC
,可举反例,取A=(1,1,1,…,1),B=(1,2,1,1,…,1),C(2,2,2,1,1,…,1),即可;
(Ⅲ)依题意,设bi-ai(i=1,2,…,n)中有m(m≤n)项为非负数,n-m项为负数.不妨设i=1,2,…,m时bi-ai≥0;i=m+1,m+2,…,n时,bi-ai<0,由d(I,A)=d(I,B)=p,可求得d(A,B)=2p.
解答:(Ⅰ)解:当n=5时,由d(A,B)=
5
i=1
|ai-bi|
=7,
得|1-2|+|2-4|+|1-2|+|2-1|+|a5-3|=7,即|a5-3|=2.
由a5∈N*,得 a5=1,或a5=5.
(Ⅱ)(ⅰ)证明:设A=(a1,a2,…,an),B=(b1,b2,…,bn),C=(c1,c2,…,cn).
因为?λ>0,使
AB
BC

所以?λ>0,使得 (b1-a1,b2-a2,…,bn-an)=λ((c1-b1,c2-b2,…,cn-bn),
即?λ>0,使得 bi-ai=λ(ci-bi),其中i=1,2,…,n.
所以 bi-ai与ci-bi(i=1,2,…,n)同为非负数或同为负数.
所以d(A,B)+d(B,C)=
n
i=1
|ai-bi|+
n
i=1
|bi-ci|=
n
i=1
(|bi-ai|+|ci-bi|)=
n
i=1
|ci-ai|=d(A,C).
(ⅱ)解:设A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C),此时不一定?λ>0,使得
AB
BC

反例如下:取A=(1,1,1,…,1),B=(1,2,1,1,…,1),C(2,2,2,1,1,…,1),
则 d(A,B)=1,d(B,C)=2,d(A,C)=3,显然d(A,B)+d(B,C)=d(A,C).
因为
AB
=(0,1,0,0,…,0)
BC
=(1,0,1,0,0,…,0),
所以不存在λ>0,使得
AB
BC
..
(Ⅲ)因为d(A,B)=
n
i=1
|ai-bi|,
设bi-ai(i=1,2,…,n)中有m(m≤n)项为非负数,n-m项为负数.不妨设i=1,2,…,m时bi-ai≥0;i=m+1,m+2,…,n时,bi-ai<0.
所以d(A,B)=
n
i=1
|ai-bi|=[(b1+b2+…+bm)-(a1+a2+…+am)]+[(am+1+am+2+…+an)-(bm+1+bm+2+…+bn)],
因为 d(I,A)=d(I,B)=p,
n
i=1
 (ai-1)=
n
i=1
(bi-1),整理得
n
i=1
ai
=
n
i=1
bi

所以d(A,B)=
n
i=1
|ai-bi|=2[b1+b2+…+bm-(a1+a2+…+am)].
因为 b1+b2+…+bm=(b1+b2+…+bn)-(bm+1+bm+2+…+bn)≤(p+n)-(n-m)×1=p+m;
又 a1+a2+…+am≥m×1=m,
所以 d(A,B)=2[b1+b2+…+bm-(a1+a2+…+am)]≤2[(p+m)-m]=2p.即 d(A,B)≤2p.…(12分)
对于 A=(1,1,…,1,p+1),B=(p+1,1,1,…,1),有 A,B∈Sn,且d(I,A)=d(I,B)=p,d(A,B)=2p.
综上,d(A,B)的最大值为2p.
点评:本题考查绝对值三角不等式,考查数列的求和,突出考查构造思想与举反例,考查抽象思维与创新思维能力考查推理转化能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•西城区一模)从甲、乙等5名志愿者中选出4名,分别从事A,B,C,D四项不同的工作,每人承担一项.若甲、乙二人均不能从事A工作,则不同的工作分配方案共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.
(Ⅰ)若甲停车1小时以上且不超过2小时的概率为
1
3
,停车付费多于14元的概率为
5
12
,求甲停车付费恰为6元的概率;
(Ⅱ)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)设等比数列{an}的公比为q,前n项和为Sn,且a1>0.若S2>2a3,则q的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)记实数x1,x2,…,xn中的最大数为max{x1,x2,…,xn},最小数为min{x1,x2,…,xn}.设△ABC的三边边长分别为a,b,c,且a≤b≤c,定义△ABC的倾斜度为t=max{
a
b
b
c
c
a
}•min{
a
b
b
c
c
a
}

(ⅰ)若△ABC为等腰三角形,则t=
1
1

(ⅱ)设a=1,则t的取值范围是
[1,
1+
5
2
)
[1,
1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)如图,正六边形ABCDEF的边长为1,则
AC
DB
=
-
3
2
-
3
2

查看答案和解析>>

同步练习册答案