精英家教网 > 高中数学 > 题目详情
(2013•西城区一模)从甲、乙等5名志愿者中选出4名,分别从事A,B,C,D四项不同的工作,每人承担一项.若甲、乙二人均不能从事A工作,则不同的工作分配方案共有(  )
分析:根据题意中“甲、乙只能从事后三项工作,其余三人均能从事这四项工作”这一条件,分两种情况讨论:
①甲、乙中只有1人被选中,②、甲、乙两人都被选中,由分步计数原理可得每种情况的选派方案的数目,
进而由分类计数原理,即可得答案.
解答:解:根据题意,分两种情况讨论:
①、甲、乙中只有1人被选中,需要从甲、乙中选出1人,担任后三项工作中的1种,由其他三人担任剩余的
三项工作,有C21•C31•A33=36种选派方案.
②、甲、乙两人都被选中,则在后三项工作中选出2项,由甲、乙担任,从其他三人中选出2人,担任剩余的
两项工作,有C32•A22•C32•A22=36种选派方案,
综上可得,共有36+36=72中不同的选派方案,
故选B.
点评:本题考查排列、组合的应用,涉及分类加法原理的应用,注意根据题意中“甲、乙只能从事前三项工作,
其余三人均能从事这四项工作”这一条件,进行分类讨论,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•西城区一模)某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.
(Ⅰ)若甲停车1小时以上且不超过2小时的概率为
1
3
,停车付费多于14元的概率为
5
12
,求甲停车付费恰为6元的概率;
(Ⅱ)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)设等比数列{an}的公比为q,前n项和为Sn,且a1>0.若S2>2a3,则q的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)记实数x1,x2,…,xn中的最大数为max{x1,x2,…,xn},最小数为min{x1,x2,…,xn}.设△ABC的三边边长分别为a,b,c,且a≤b≤c,定义△ABC的倾斜度为t=max{
a
b
b
c
c
a
}•min{
a
b
b
c
c
a
}

(ⅰ)若△ABC为等腰三角形,则t=
1
1

(ⅱ)设a=1,则t的取值范围是
[1,
1+
5
2
)
[1,
1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)如图,正六边形ABCDEF的边长为1,则
AC
DB
=
-
3
2
-
3
2

查看答案和解析>>

同步练习册答案