精英家教网 > 高中数学 > 题目详情

用数学归纳法证明不等式:数学公式+数学公式+数学公式+…+数学公式>1(n∈N*且n.1).

证明:(1)当n=2时,左边=,∴n=2时成立(2分)
(2)假设当n=k(k≥2)时成立,即

那么当n=k+1时,左边=
=


>1+>1
∴n=k+1时也成立(7分)
根据(1)(2)可得不等式对所有的n>1都成立(8分)
分析:直接利用数学归纳法的证明步骤证明不等式,(1)验证n=2时不等式成立;(2)假设当n=k(k≥2)时成立,利用放缩法证明n=k+1时,不等式也成立.
点评:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用数学归纳法证明不等式:
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
>1(n∈N*且n>1).

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式1+
1
2
+
1
4
+…+
1
2n-1
127
64
成立,起始值至少应取为(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式1+
1
2
+
1
3
+…+
1
2n-1
n
2
(n∈N*),第二步由k到k+1时不等式左边需增加(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式
1
n+1
+
1
n+2
+…+
1
n+n
13
24
的过程中,由n=k推导n=k+1时,不等式的左边增加的式子是
1
(k+1)+k
+
1
(k+1)+(k+1)
-
1
k+1
1
(k+1)+k
+
1
(k+1)+(k+1)
-
1
k+1

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式
1
n+1
+
1
n+2
+…+
1
n+n
13
24
的过程中,由“k推导k+1”时,不等式的左边增加了(  )

查看答案和解析>>

同步练习册答案