【题目】已知椭圆
:
上一点与两焦点构成的三角形的周长为
,离心率为
.
(1)求椭圆
的方程;
(2)设椭圆C的右顶点和上顶点分别为A、B,斜率为
的直线l与椭圆C交于P、Q两点(点P在第一象限).若四边形APBQ面积为
,求直线l的方程.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
的底面是正方形,每条侧棱的长都是底面边长的
倍,P为侧棱SD上的点.
![]()
(1)求证:
;
(2)若
平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE:EC;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校研究性学习小组发现,学生上课的注意力指标随着听课时间的变化而变化.老师讲课开始时学生的兴趣激增,接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.该小组发现注意力指标
与上课时刻第
分钟末的关系如下(
,设上课开始时,t=0):
.若上课后第5分钟末时的注意力指标为140.
(1)求
的值;
(2)上课后第5分钟末和第35分钟末比较,哪个时刻注意力更集中?
(3)在一节课中,学生的注意力指标至少达到140的时间能保持多长?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项的和为
,且
,
.
(1)证明数列
为等比数列,并求出数列
的通项公式;
(2)设
,求数列
的前
项的和
;
(3)设函数
(
为常数),且(2)中的
>
对任意的
和
都成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知常数
,数列
的前n项和为
,
,
.
(1)求数列
的通项公式;
(2)若
,且数列
是单调递增数列,求实数a的取值范围;
(3)若
,
,对于任意给定的正整数k,是否都存在正整数p、q,使得
?若存在,试求出p、q的一组值(不论有多少组,只要求出一组即可);若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
为圆
的圆心,
是圆上的动点,点
在圆的半径
上,且有点
和
上的点
,满足
,
.
(1)当点
在圆上运动时,求点
的轨迹方程;
(2)若斜率为
的直线
与圆
相切,直线
与(1)中所求点
的轨迹交于不同的两点
,
,
是坐标原点,且
时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,A,B是圆O:
与x轴的两个交点(点B在点A右侧),点
,x轴上方的动点P使直线
,
,
的斜率存在且依次成等差数列.
![]()
(1)求证:动点P的横坐标为定值;
(2)设直线
,
与圆O的另一个交点分别为S,T.求证:点Q,S,T三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
长轴的两个端点分别为
,
, 离心率
.
(1)求椭圆
的标准方程;
(2)作一条垂直于
轴的直线,使之与椭圆
在第一象限相交于点
,在第四象限相交于点
,若直线
与直线
相交于点
,且直线
的斜率大于
,求直线
的斜率
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com