精英家教网 > 高中数学 > 题目详情
已知曲线
(1)求曲线在点P(1,1)处的切线方程
(2)求曲线过点P(1,0)处的切线方程.
【答案】分析:(1)根据曲线的解析式求出导函数,把P的横坐标代入导函数中即可求出切线的斜率,根据P的坐标和求出的斜率写出切线的方程即可;
(2)设出曲线过点P切线方程的切点坐标,把切点的横坐标代入到(1)求出的导函数中即可表示出切线的斜率,根据切点坐标和表示出的斜率,写出切线的方程,把P的坐标代入切线方程即可得到关于切点横坐标的方程,求出方程的解即可得到切点横坐标的值,分别代入所设的切线方程即可;
解答:解:(1)∵P(1,1)在曲线曲线,且y'=-
∴在点P(1,1)处的切线的斜率k=y'|x=1=-1;
∴曲线在点P(1,1)处的切线方程为y-1=-(x-1),即x+y-2=0.
(2)设曲线线,过点P(1,0)的切线相切于点A(x),
则切线的斜率 k=-
∴切线方程为y-═-(x-x),
∵点P(1,0)在切线上,
∴-═-(1-x),
解得x=
故所求的切线方程为4x+y-4=0
点评:此题考查学生会利用导数研究曲线上某点的切线方程,是一道综合题.学生在解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”;同时解决“过某点的切线”问题,一般是设出切点坐标解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m1
=(0,x),
n1
=(1,1),
m2
=(x,0),
n2
=(y2,1)(其中x,y是实数),又设向量
m
=
m1
2
n2
n
=
m2
-
2
n1
,且
m
n
,点P(x,y)的轨迹为曲线C.
(1)求曲线C的方程;
(2)设曲线C与y轴的正半轴的交点为M,过点M作一条直线l与曲线C交于另一点N,当|MN|=
4
3
2
时,求直线 l 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx2-3x+
1
3
,f(2)=-7,f′(2)=-3,g(2)=1,g′(2)=-
1
2

(1)求函数f(x)在[-4,4]的最大值和最小值;
(2)设h(x)=
f(x)+5
g(x)
,求曲线y=h(x)在点(2,h(2))处的切线l的方程,并判断l是否与曲线y=f(x)相切,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C是动点M到两个定点O(0,0)、A(3,0)距离之比为
12
的点的轨迹.
(1)求曲线C的方程;
(2)求过点N(1,3)与曲线C相切的直线方程.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省嘉兴一中高二(下)3月月考数学试卷(理科)(解析版) 题型:解答题

已知曲线
(1)求曲线在点P(1,1)处的切线方程
(2)求曲线过点P(1,0)处的切线方程.

查看答案和解析>>

科目:高中数学 来源:2010-2011年山东省高二下学期期中考试数学试卷(A) 题型:解答题

 

(本小题满分12分)已知曲线 . 

(1)求曲线在(1,1)点处的切线的方程;

(2)求由曲线、直线和直线所围成图形的面积。

 

 

查看答案和解析>>

同步练习册答案