精英家教网 > 高中数学 > 题目详情

【题目】已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由安徽卫视推出的大型户外竞技类活动《男生女生向前冲》.活动共有四关,若四关都闯过,则闯关成功,否则落水失败.设男生闯过一至四关的概率依次是,女生闯过一至四关的概率依次是.

(Ⅰ)求男生甲闯关失败的概率;

(Ⅱ)设表示四人冲关小组闯关成功的人数,求随机变量的分布列和期望.

【答案】(Ⅰ);(Ⅱ)见解析.

【解析】试题分析:(1)根据分步乘法原理和对立事件,结合题目所给数据即可求解;

(2)结合(1)中结论,分别计算取不同值时的概率,列出分布列,即可求出期望.

试题解析:(Ⅰ)记“男生甲闯关失败”为事件,则“男生甲闯关成功”为事件

.

(Ⅱ)记“一位女生闯关成功”为事件,则

随机变量的所有可能取值为.

.

的分布列为:

0

1

2

3

4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设直线经过点倾斜角为.(10分).

(1)写出直线的参数方程

(2)求直线与直线的交点到点的距离

(3)设与圆 相交于两点,求点两点的距离的和与积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(

(1)当时,求函数处的切线方程;

(2)若函数在区间上单调递增,求的取值范围;

(3)求函数在区间的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)若过点恰有两条直线与曲线相切,求的值;

)用表示中的最小值,设函数,若恰有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正数x、y满足xy=x+y+3.
(1)求xy的范围;
(2)求x+y的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东莞市某高级中学在今年4月份安装了一批空调,关于这批空调的使用年限(单位:年, )和所支出的维护费用(单位:万元)厂家提供的统计资料如下:

(1)请根据以上数据,用最小二乘法原理求出维护费用关于的线性回归方程

(2)若规定当维护费用超过13.1万元时,该批空调必须报废,试根据(1)的结论预测该批空调使用年限的最大值.

参考公式:最小二乘估计线性回归方程中系数计算公式:

,其中表示样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a1=1,a3=﹣3.
(1)求数列{an}的通项公式;
(2)若数列{an}的前k项和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,四边形是菱形,,二面角 .

(Ⅰ)求证:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案