精英家教网 > 高中数学 > 题目详情
如图,已知两个正四棱锥P—ABCD与Q—ABCD的高分别为1和2,AB=4.

(1)证明PQ⊥平面ABCD;

(2)求异面直线AQ与PB所成的角;

(3)求点P到平面QAD的距离.

(1)证明:取AD的中点M,连结PM、QM.

因为P—ABCD与Q—ABCD都是正四棱锥,所以AD⊥PM,AD⊥QM.

从而AD⊥平面PQM.

又PQ平面PQM,

所以PQ⊥AD.

同理,PQ⊥AB,所以PQ⊥平面ABCD.

(2)解析:连结AC、BD,设AC∩BD=O,由PQ⊥平面ABCD及正四棱锥的性质可知O在PQ上,从而P、A、Q、C四点共面.

取OC的中点N,连结PN.

因为,

所以,从而AQ∥PN,

∠BPN(或其补角)是异面直线AQ与PB所成的角.

连结BN.

因为PB=

,

所以cos∠BPN=.

从而异面直线AQ与PB所成的角是arccos.

(3)解析:由(1)知,AD⊥平面PQM,所以平面QAD⊥平面PQM.

过P作PH⊥QM于H,则PH⊥平面QAD,所以PH的长为点P到平面QAD的距离.

连结OM,因为OM=AB=2=OQ,

所以∠MQP=45°.

又PQ=PO+QO=3,于是PH=PQsin45°=,

即点P到平面QAD的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

我们将底面是正方形,侧棱长都相等的棱锥称为正四棱锥.已知由两个完全相同的正四棱锥组合而成的空间几何体的正视图、侧视图、俯视图都相同,且如图所示,视图中四边形ABCD是边长为1的正方形,则该几何体的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)如图,在正四棱柱ABCD-A1B1C1D1中,AB=4,AA1=8.
(1)求异面直线B1C与A1C1所成角的大小;(用反三角函数形式表示)
(2)若E是线段DD1上(不包含线段的两端点)的一个动点,请提出一个与三棱锥体积有关的数学问题(注:三棱锥需以点E和已知正四棱柱八个顶点中的三个为顶点构成);并解答所提出的问题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正四棱柱ABCD-A1B1C1D1中,AB=4,AA1=8.
(1)求异面直线B1C与A1C1所成角的大小;(用反三角函数形式表示)
(2)若E是线段DD1上(不包含线段的两端点)的一个动点,请提出一个与三棱锥体积有关的数学问题(注:三棱锥需以点E和已知正四棱柱八个顶点中的三个为顶点构成);并解答所提出的问题.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省福州三中高三(上)期中数学试卷(解析版) 题型:选择题

我们将底面是正方形,侧棱长都相等的棱锥称为正四棱锥.已知由两个完全相同的正四棱锥组合而成的空间几何体的正视图、侧视图、俯视图都相同,且如图所示,视图中四边形ABCD是边长为1的正方形,则该几何体的体积为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2008年上海市奉贤区高考数学二模试卷(文科)(解析版) 题型:解答题

如图,在正四棱柱ABCD-A1B1C1D1中,AB=4,AA1=8.
(1)求异面直线B1C与A1C1所成角的大小;(用反三角函数形式表示)
(2)若E是线段DD1上(不包含线段的两端点)的一个动点,请提出一个与三棱锥体积有关的数学问题(注:三棱锥需以点E和已知正四棱柱八个顶点中的三个为顶点构成);并解答所提出的问题.

查看答案和解析>>

同步练习册答案