精英家教网 > 高中数学 > 题目详情
(2008•奉贤区二模)如图,在正四棱柱ABCD-A1B1C1D1中,AB=4,AA1=8.
(1)求异面直线B1C与A1C1所成角的大小;(用反三角函数形式表示)
(2)若E是线段DD1上(不包含线段的两端点)的一个动点,请提出一个与三棱锥体积有关的数学问题(注:三棱锥需以点E和已知正四棱柱八个顶点中的三个为顶点构成);并解答所提出的问题.
分析:(1)连接AC、AB1,易知∠B1CA为异面直线B1C与A1C1所成角,在△B1CA中利用余弦定理解之即可即可求出异面直线B1C与A1C1所成角的大小;
(2)本小题是开放题,第一种:提出问题:证明三棱锥E-B1BC的体积为定值,根据三棱锥E-B1BC与三棱锥D-B1BC同底等高可得结论.
第二种:提出问题:三棱锥E-ADC的体积在E点从点D运动到D1过程中单调递增,根据三棱锥E-ADC的体积与DE成正比,可知VE-ADC随着DE增大而增大可得结论.
解答:解:(1)如图,连接AC、AB1,由AA1
.
CC1

知A1ACC1是平行四边形,则A1C1
.
AC

所以∠B1CA为异面直线B1C与A1C1所成角.-----(2分)
在△B1CA中,AC=4
2
AB1=B1C=4
5

cos∠ACB1=
AC2+B1C2-AB12
2AC•B1C
=
10
10

所以∠ACB1=arccos
10
10
.----------(4分)

(2)若学生能提出一些质量较高的问题,则相应给(3分),有解答的再给(5分).
而提出一些没有多大价值的问题则不给分.
若提出的问题为以下两种情况,可以相应给分.
第一种:
提出问题:证明三棱锥E-B1BC的体积为定值.-----(3分)
问题解答:如图,因为DD1∥平面B1BCC1,所以D1D上任意一点到平面B1BCC1的距离相等,因此三棱锥E-B1BC与三棱锥D-B1BC同底等高,VE-B1BC=VD-B1BC.----------(3分)
VD-B1BC=
1
3
SB1BC•DC=
1
3
×
1
2
×4×8×4=
64
3

所以三棱锥E-B1BC的体积为定值
64
3
.----------(2分)
说明:1)若提出的问题为求三棱锥E-B1BC的体积,则根据上述解答相应给分.
2)若在侧面B1BCC1上任取三个顶点,与点E构成三棱锥时,结论类似,可相应给分.
若在侧面A1ABB1上任取三个顶点,与点E构成三棱锥时,结论类似,可相应给分.
第二种:
提出问题:三棱锥E-ADC的体积在E点从点D运动到D1过程中单调递增.-----(3分)
问题解答:因为VE-ADC=
1
3
S△ADC•DE
,知S△ADC为定值,
则三棱锥E-ADC的体积与DE成正比,可知VE-ADC随着DE增大而增大,又因为DE∈(0,8),----(3分)
即三棱锥E-ADC的体积在E点从点D运动到D1过程中单调递增.-----(2分)
说明:1)若提出的问题是求三棱锥E-ADC的体积范围,也可相应给分.
解答:因为S△ADC=8,而VE-ADC=
8
3
DE
,DE∈(0,8),----(3分)
VE-ADC∈(0,
64
3
)
.----(2分).

2)若在底面ABCD上任取三个顶点,与点E构成三棱锥时,结论类似,可相应给分.
若在底面A1B1C1D1上任取三个顶点,与点E构成三棱锥时,结论类似(单调递减),
可相应给分.
点评:本题主要考查了异面直线所成角,以及体积的度量,同时考查了空间想象能力,以及发散性思维,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=cos2x的最小正周期为
π
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)已知数列{an}的前n项和为Sn,若Sn=2n-1,则a7=
64
64

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=
x2+x-2
的定义域为
(-∞,-2]∪[1,+∞)
(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=x(1-x),x∈(0,1)的最大值为
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)已知椭圆的标准方程为
x2
4
+
y2
3
=1
,则该椭圆的焦距为
2
2

查看答案和解析>>

同步练习册答案