【题目】已知中心为原点O,焦点在x轴上的椭圆C的离心率为
,且椭圆C的长轴是圆
的一条直径.
(1)求椭圆C的方程;
(2)若不过原点的直线l与椭圆C交于A,B两点,与圆M交于P、Q两点,且直线OA,AB,OB的斜率成等比数列,求
的取值范围.
【答案】(1)
(2)![]()
【解析】
(1)根据椭圆的离心率公式
,列方程,再由椭圆长轴是圆的直径,判断
,即可求解;
(2)根据题意,设直线方程
,将直线方程与椭圆方程联立,消元得到关于
的一元二次方程,使判别式
,列出
,由直线OA,AB,OB的斜率成等比数列,列出方程
,再代入
,化简求解参数值
,再根据直线与圆相交利用几何法求解弦长,并根据判别式
,求解参数范围,代入,即可求
取值范围.
(1)设椭圆方程为
,
由已知
,得
,
由椭圆C的长轴是圆
的一条直径,得
,则
.
得椭圆方程为
.
(2)设
,
联立方程
,得
,
,
设
,
,则
,(*)
因为直线OA、AB、OB的斜率成等比数列,得
,将(*)式代入,得
,因为
,则
,得
,
由OA、OB的斜率存在,及
,得
,得
,且
,
设原点O到直线l的距离为d,则
,
,因为
,且
,
故
.
科目:高中数学 来源: 题型:
【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计显示,男士喜欢阅读古典文学的有64人,不喜欢的有56人;女士喜欢阅读古典文学的有36人,不喜欢的有44人.
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记
为参加交流会的5人中喜欢古典文学的人数,求
的分布列及数学期望
.
附:
,其中
.
参考数据:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右顶点为
,上顶点为
.已知椭圆的离心率为
,
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线
:
与椭圆交于
,
两点,且点
在第二象限.
与
延长线交于点
,若
的面积是
面积的3倍,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是由非负整数组成的无穷数列,对每一个正整数
,该数列前
项的最大值记为
,第
项之后各项
的最小值记为
,记
.
(1)若数列
的通项公式为
,求数列
的通项公式;
(2)证明:“数列
单调递增”是“
”的充要条件;
(3)若
对任意
恒成立,证明:数列
的通项公式为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数
与
的和表示
等.从
这100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是________.(按照从大到小的顺序排列)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,已知倾斜角为
的直线
过点
,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系.曲线
的极坐标方程为
,直线
与曲线
分别交于
、
两点.
(1)写出直线
的参数方程和曲线
的直角坐标方程;
(2)若
,求直线
的斜率
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com