已知椭圆=1(其中a>b>0)与直线x+y=1交于P、Q两点,且OP⊥OQ,其中O为坐标原点.
(1)求的值;
(2)若椭圆的离心率e满足≤e≤,求椭圆长轴的取值范围.
解:设P(x1,y1)、Q(x2,y2),由OP⊥OQ得x1x2+y1y2=0, ∵y1=1-x1,y2=1-x2,代入x1x2+y1y2=0得2x1x2-(x1+x2)+1=0 ① 又将y=1-x代入=1得(a2+b2)x2-2a2x+a2(1-b2)=0,x1+x2=,x1x2=, 代入①式并化简得=2. (2)由e2==1-及已知得≤1-≤, ≤≤. 又由(1)知b2=,所以≤≤,≤a2≤,≤a≤,其长轴2a∈[]. 思路解析:本题涉及直线与椭圆的交点,对于此类问题往往联立它们的方程消去其中的一个未知数,再利用根与系数间的关系,从而得到相应的两个交点的坐标间的关系,再结合题目中的其他条件将问题解决. |
科目:高中数学 来源:学习周报 数学 人教课标高二版(A选修2-1) 2009-2010学年 第17期 总第173期 人教课标版(A选修2-1) 题型:013
已知椭圆=1上的一点P到其中一个焦点的距离为3,则点P到另一个焦点的距离为
2
3
5
7
查看答案和解析>>
科目:高中数学 来源:全优设计选修数学-1-1苏教版 苏教版 题型:044
已知椭圆=1(其中a>b>0)与直线x+y=1交于P、Q两点,且OP⊥OQ,其中O为坐标原点.
(1)求的值;
(2)若椭圆的离心率e满足≤e≤,求椭圆长轴的取值范围.
探究:本题涉及直线与椭圆的交点,对于此类问题往往联立它们的方程消去其中的一个未知数,再利用根与系数间的关系,从而得到相应的两个交点的坐标间的关系,再结合题目中的其它条件将问题解决.
查看答案和解析>>
科目:高中数学 来源:选修设计数学1-1北师大版 北师大版 题型:044
已知椭圆+=1(其中a>b>0)与直线x+y=1交于P、Q两点,且OP⊥OQ,其中O为坐标原点.
(1)求+的值;
(2)若椭圆的离心率e满足≤e≤,求椭圆长轴的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
在平面直角坐标系xOy中,如图,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA,TB与此椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设x1=2,x2=,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com