精英家教网 > 高中数学 > 题目详情
6.圆(x-1)2+(y-2)2=1的圆心坐标是(  )
A.(1,2)B.(-1,-2)C.(2,1)D.(-2,-1)

分析 根据圆的标准方程的特征求出圆心的坐标.

解答 解:根据圆的标准方程的特征,可得圆(x-1)2+(y-2)2=1的圆心坐标为(1,2),
故选:A.

点评 本题主要考查圆的标准方程的特征,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow a=(t,0,-1),\overrightarrow b=(2,5,{t^2})$,若$\overrightarrow a⊥\overrightarrow b$,则t=0或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.△ABC是边长为3的等边三角形,$\overrightarrow{BF}$=λ$\overrightarrow{BC}$($\frac{1}{2}$<λ<1),过点F作DF⊥BC交AC边于点D,交BA的延长线于点E.

(1)当λ=$\frac{2}{3}$时,设$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,用向量$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{EF}$;
(2)当λ为何值时,$\overrightarrow{AE}$•$\overrightarrow{FC}$取得最大值,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图为函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<$\frac{π}{2}$)的一段图象.
(1)写出函数f(x)的解析式和单调增区间;
(2)若$α∈(-\frac{π}{4},\frac{π}{4})$,$β∈(\frac{π}{4},\frac{3π}{4})$,且f($\frac{α}{2}$)=$\frac{\sqrt{26}}{13}$,f($\frac{β}{2}$-$\frac{π}{4}$)=$\frac{4\sqrt{13}}{13}$,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知角α的终边与单位圆交于点P(x,y),且x+y=-$\frac{1}{5}$,则tan(α+$\frac{π}{4}$)=±$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,点A(-1,-2),B(2,3).
(1)求向量$\overrightarrow{AB}$;
(2)若向量$\overrightarrow{a}∥\overrightarrow{AB}$,且$\overrightarrow{a}$=(1,k),求k.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知:$\overrightarrow{a}$=(2sinx,2cosx),$\overrightarrow{b}$=(cosx,-cosx),f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$.
(1)若$\overrightarrow{a}$与$\overrightarrow{b}$共线,且x∈($\frac{π}{2}$,π),求x的值;
(2)求函数f(x)的周期;
(3)若对任意x∈[0,$\frac{π}{2}$]不等式m-2≤f(x)≤m+$\sqrt{2}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.方程$C_{11}^x=C_{11}^{2x-4}$的解为4或5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某单位有青年职工、中年职工、老年职工共900人,其中青年职工450人,为迅速了解职工的家家听到状况,采用分层抽样的方法从中抽取样本,若样本中的青年职工为15人,则抽样的样本容量为30.

查看答案和解析>>

同步练习册答案