精英家教网 > 高中数学 > 题目详情
已知f(x)=atan
x2
-bsinx+4(其中a、b为常数且ab≠0),如果f(3)=5,则f(2010π-3)的值为
 
分析:令g(x)=atan
x
2
-bsinx根据f(3)=5可求得g(3),同时利用诱导公式可知g(2010π-3)=-g(3),进而利用f(2010π-3)=g(2010π-3)+4求得答案.
解答:解:令g(x)=atan
x
2
-bsinx
∵f(3)=g(3)+4=5
∴g(3)=1
∴g(2010π-3)=atan(1005π-
3
2
)-bsin(2010π-3)=-atan
3
2
+bsin3=-1
∴f(2010π-3)=g(2010π-3)+4=4-1=3
故答案为:3
点评:本题主要考查了三角函数的化简求值,诱导公式的应用,函数的思想.考查了基础知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的偶函数,且f(x-
3
2
)=f(x+
1
2
)
恒成立,当x∈[2,3]时,f(x)=x,则当x∈(-1,0)时,函数f(x)的解析式为
f(x)=2-x
f(x)=2-x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sin(x+
π
6
)-
4
3
3
tanα•cos2
x
2
,α∈(0,π) 且f(
π
2
=
3
-2).
(1)求α;
(2)当x∈[
π
2
,π
]时,求函数y=f(x+α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax+b的图象如图所示,则f(3)=
3
3
-3
3
3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x2+3xf′(2),则f′(0)=
-12
-12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=cos(2x-
π
6
)+cos(2x-
6
)-2cos2x+1,
(1)求f(x)的最小正周期;
(2)求函数f(x)在区间[-
π
4
π
4
 ]
上的最大值和最小值.

查看答案和解析>>

同步练习册答案