精英家教网 > 高中数学 > 题目详情
电灯可在点A与桌面的垂直线上移动(如图),在桌面上另一点B离垂足O的距离为a,为使点B处有最大的照度(照度I与sin∠OBA成正比,与r2成反比,且比例系数均为正的常数),则电灯A与点O的距离为(  )
分析:根据题意列出照度函数关系式,建立三角函数模型,然后用均值不等式求最值即可.
解答:解:依题意,记∠OBA=∅,可设照度I=k•
sin∅
r2
,(k为正常数),则有cosφ=
a
r
,I=k
sin∅cos2
a2

又sinφcos2φ=
sin2∅cos4
=
4sin2
1
2
cos2
1
2
cos2
(
sin2∅+
1
2
cos2∅+
1
2
cos2
3
)3
=
4(
1
3
)3

当且仅当sin2φ=
1
2
cos2φ即,tanφ=
2
2
时,I有最大值,此时
AO
a
=
2
2
,即AO=
2
2
a

故选B.
点评:解答此题要注意审题,理解照度的含义,建立三角函数模型,考查均值不等式的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖北)设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.
(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;
(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:x2=2py(p>0)的焦点为F,A(x0,y0)(x0≠0)是抛物线C上的一定点.
(1)已知直线l过抛物线C的焦点F,且与C的对称轴垂直,l与C交于Q,R两点,S为C的准线上一点,若△QRS的面积为4,求p的值;
(2)过点A作倾斜角互补的两条直线AM,AN,与抛物线C的交点分别为M(x1,y1),N(x2,y2).若直线AM,AN的斜率都存在,证明:直线MN的斜率等于抛物线C在点A关于对称轴的对称点A1处的切线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)
(1)设∠BAC=θ(弧度),将绿化带总长度表示为θ的函数S(θ);
(2)试确定θ的值,使得绿化带总长度最大.

查看答案和解析>>

科目:高中数学 来源:2013届浙江省高二下学期第一次质检理科数学试卷(解析版) 题型:选择题

电灯可在点A与桌面的垂直线上移动(如图),在桌面上另一点B离垂足O的距离为a,为使点B处有最大的照度(照度I与sin∠OBA成正比,与r2成反比,且比例系数均为正的常数),则电灯A与点O的距离为(  )

A. a       B. a        C. a        D. a

 

查看答案和解析>>

同步练习册答案