精英家教网 > 高中数学 > 题目详情
已知集合A={x|y=
x2-2x-3
}
,集合B={x|y=
a-x
}
,又A∩B=B,则实数a的取值范围是
 
分析:集合A,B表示的是函数的定义域,列出不等式,化简集合A,B;将A∩B=B转化为A∩B=B,判断出两个集合端点的大小,求出a的范围.
解答:解:∵A={x|y=
x2-2x-3
}
={x|x2-2x-3≥0}={x|x≥3或x≤-1}
B={x|y=
a-x
}={x|x≤a}

∵A∩B=B
∴B⊆A
A∩B=B∴a≤-1
故答案为:a≤-1
点评:解决集合间的关系问题时,首先应该先化简各个集合;再利用集合的关系判断出集合端点间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|y=
1-x2
,x∈Z},B={y|y=x2+1,x∈A}
,则A∩B为(  )
A、∅B、{1}
C、[0,+∞)D、{(0,1)}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=
15-2x-x2
},B={y|y=a-2x-x2},若A∩B=A,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=
2x-x2
},B={y|y=3x,x>0},定义A*B
为图中阴影部分的集合,则A*B(  )
精英家教网
A、{x|0<x<2}
B、{x|1<x≤2}
C、{x|0≤x≤1或x≥2}
D、{x|0≤x≤1或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=lg(x+3)},B={x|x≥2},则下列结论正确的是(  )
A、-3∈AB、3∉BC、A∪B=BD、A∩B=B

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=lgx},B={x|x2+x-2≤0},则A∩B=(  )
A、[-1,0)B、(0,1]C、[0,1]D、[-2,1]

查看答案和解析>>

同步练习册答案