精英家教网 > 高中数学 > 题目详情
4.若3$<(\frac{1}{3})$x<27,则(  )
A.-1<<3B.-3<<-1C.x<-1或x>3D.1<x<3

分析 根据题意,由3$<(\frac{1}{3})$x<27,可得3<(3)-x<33,结合指数函数y=3x为增函数,可得1<-x<3,解可得答案.

解答 解:根据题意,由3$<(\frac{1}{3})$x<27,
可得3<(3)-x<33
而指数函数y=3x为增函数,
则必有1<-x<3,
即-3<x<-1;
故选B.

点评 本题考查指数不等式的解法,注意要分析指数函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=1og2(x+1)-1og2(x-1).
(1)求f(x)的定义域;
(2)写出f(x)的单调区间;
(3)若对[3,5]上的任意x都有f(x)<2x+m成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.$\underset{lim}{n→∞}$($\frac{1}{2}×\frac{3}{4}×\frac{5}{6}…\frac{2n-1}{2n}$)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次方程(2m+1)x2-2mx+(m-1)=0有且只有一个实根属于(1,2),且x=1,x=2都不是方程的根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示为一几何体展开图.

(1)沿图中虚线将它们折叠起来,是哪一种几何体?试画出示意图并用文字描述几何体的结构特征;
(2)图(2)可以由3个图(1)的折叠后的几何体组合而成,请在图(2)中棱长为6CM的正方体ABCD-A1B1C1D1中指出这几个几何体的名称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若x,y>0,且x+2y=1,则(x+$\frac{1}{x}$)(y+$\frac{1}{4y}$)的最小值是(  )
A.$\frac{25}{2}$B.$\frac{25}{4}$C.$\frac{25}{8}$D.$\frac{25}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函效g(x)=$\frac{{3}^{x}+a}{{3}^{x}-a}$为奇函数,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数x,y满足ln(2x+2y)=0,则x+y的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且$\frac{BG}{GC}=\frac{DH}{HC}$=2,求证:直线EG,FH,AC相交于同一点P.

查看答案和解析>>

同步练习册答案