精英家教网 > 高中数学 > 题目详情
经过抛物线y2=2px(p>0)的焦点作一直线l交抛物线于A(x1,y1)、B(x2,y2),则的值为________________.
-4
当x1=x2=时,y1y2=-p2,
=-4;
当x1≠x2时,设l:y=k(x-)(k≠0),
则x=.
代入y2=2px,得y2-y-p2=0,
∴y1+y2=,y1y2=-p2.
∴x1x2=(+)(+)=.
=-p2÷()=-4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0)作两条直线分别交抛物线于A(x1,y1)、B(x2,y2).
(1)求该抛物线上纵坐标为的点到其焦点F的距离;
(2)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求过点的直线,使它与抛物线仅有一个交点。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点的切线方程为为常数).
(I)求抛物线方程;
(II)斜率为的直线PA与抛物线的另一交点为A,斜率为的直线PB与抛物线的另一交点为B(A、B两点不同),且满足,求证线段PM的中点在y轴上;
(III)在(II)的条件下,当时,若P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为的直线l与线段OA相交(不经过点O或点A)且交抛物线于MN两点,求△AMN面积最大时直线l的方程,并求△AMN的最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=2px与直线ax+y-4=0交于两点A、B,其中点A的坐标为(1,2),设抛物线的焦点为F,则|FA|+|FB|等于(    )
A.7                     B.3             C.6                 D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过圆锥曲线焦点的直线与此圆锥曲线交于P1、P2两点,以P1P2为直径的圆与此焦点对应的准线相切,则此圆锥曲线是(   )
A.椭圆B.双曲线C.抛物线D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

顶点在原点,焦点在x轴上,且截直线2x-y+1=0所得弦长为,求抛物线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=2px(p>0)上三点的横坐标成等差数列,那么这三点与焦点F的距离的关系是 (    )
A.成等差数列
B.成等比数列
C.既成等差数列,又成等比数列
D.既不成等差数列,也不成等比数列

查看答案和解析>>

同步练习册答案