精英家教网 > 高中数学 > 题目详情
已知抛物线与双曲线有相同的焦点,点是两曲线的交点,且轴,则双曲线的离心率为(   )
A.B.C.D.
B

试题分析:抛物线C1的焦点F(,0)。C=
又由双曲线得AF=
∴2c=,而.所以,解得= ,所以e= 故选B。
点评:小综合题,涉及圆锥曲线的几何性质问题,多考查a,b,c,e,p的关系,要掌握几何元素之间的内再联系。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的离心率为,定点,椭圆短轴的端点是,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点且斜率不为的直线交椭圆两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于A、B两点,与y轴交于点C,连接BC、AC。

(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合)。过点E作直线l平行BC,交AC于点D。设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是(   )。
A.直线B.椭圆C.抛物线D.双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,把椭圆的长轴分成等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是椭圆的一个焦点则________________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的虚轴长是实轴长的2倍,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,用与底面成角的平面截圆柱得一椭圆截线,则该椭圆的离心率为 (    )
A.B.C.D.非上述结论

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆,过椭圆右焦点F的直线L交椭圆于A、B两点,交y轴于P点。设,则等于(   )
A.         B.         C.          D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,椭圆与双曲线的离心率分别是, 则的大小关系是(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案