£¨2011•¼Î¶¨ÇøÒ»Ä££©¶¨Òåx1£¬x2£¬¡­£¬xnµÄ¡°µ¹Æ½¾ùÊý¡±Îª
n
x1+x2+¡­+xn
£¨n¡ÊN*£©£®
£¨1£©ÈôÊýÁÐ{an}ǰnÏîµÄ¡°µ¹Æ½¾ùÊý¡±Îª
1
2n+4
£¬Çó{an}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{bn}Âú×㣺µ±nÎªÆæÊýʱ£¬bn=1£¬µ±nΪżÊýʱ£¬bn=2£®ÈôTnΪ{bn}ǰnÏîµÄµ¹Æ½¾ùÊý£¬Çó
lim
n¡ú¡Þ
Tn
£»
£¨3£©É躯Êýf£¨x£©=-x2+4x£¬¶Ô£¨1£©ÖеÄÊýÁÐ{an}£¬ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹µÃµ±x¡Ü¦Ëʱ£¬f£¨x£©¡Ü
an
n+1
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö×î´óµÄʵÊý¦Ë£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÓÉÌâÒ⣬Tn=
n
Sn
=
1
2n+4
£¬ËùÒÔSn=2n2+4n£®ÓÉ´ËÄÜÇó³ö{an}µÄͨÏʽ£®
£¨2£©ÉèÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬Ôò·ÖnΪżÊýºÍnÎªÆæÊýʱ£¬·Ö±ðÇó³öSn£¬´Ó¶øÇó³öTn£®ÓÉ´ËÄÜÇó³ö
lim
n¡ú¡Þ
Tn
£®
£¨3£©¼ÙÉè´æÔÚʵÊý¦Ë£¬Ê¹µÃµ±x¡Ü¦Ëʱ£¬f£¨x£©¡Ü
an
n+1
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬Ôò-x2+4x¡Ü
4n+2
n+1
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬Áîcn=
4n+2
n+1
£¬ÔòÊýÁÐ{cn}ÊǵÝÔöÊýÁУ¬ÓÉ´ËÄÜÍÆµ¼³ö´æÔÚ×î´óµÄʵÊý¦Ë=1£¬Ê¹µÃµ±x¡Ü¦Ëʱ£¬f£¨x£©¡Ü
an
n+1
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£®
½â´ð£º½â£º£¨1£©ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬
ÓÉÌâÒ⣬Tn=
n
Sn
=
1
2n+4
£¬
ËùÒÔSn=2n2+4n£®  ¡­£¨1·Ö£©
ËùÒÔa1=S1=6£¬µ±n¡Ý2ʱ£¬an=Sn-Sn-1=4n+2£¬
¶øa1Ò²Âú×ã´Ëʽ£®¡­£¨2·Ö£©
ËùÒÔ{an}µÄͨÏʽΪan=4n+2£®¡­£¨1·Ö£©
£¨2£©ÉèÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬Ôòµ±nΪżÊýʱ£¬Sn=
3n
2
£¬¡­£¨1·Ö£©
µ±nÎªÆæÊýʱ£¬Sn=
3(n-1)
2
+1=
3n-1
2
£®  ¡­£¨1·Ö£©
ËùÒÔTn=
2
3
£¬nÎªÆæÊý
2n
3n-1
£¬nΪżÊý
£®   ¡­£¨3·Ö£©
ËùÒÔ
lim
n¡ú¡Þ
Tn=
2
3
£® ¡­£¨2·Ö£©
£¨3£©¼ÙÉè´æÔÚʵÊý¦Ë£¬Ê¹µÃµ±x¡Ü¦Ëʱ£¬f£¨x£©¡Ü
an
n+1
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬
Ôò-x2+4x¡Ü
4n+2
n+1
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬¡­£¨1·Ö£©
Áîcn=
4n+2
n+1
£¬ÒòΪcn+1-cn=
2
(n+1)(n+2)
£¾0
£¬
ËùÒÔÊýÁÐ{cn}ÊǵÝÔöÊýÁУ¬¡­£¨1·Ö£©
ËùÒÔÖ»Òª-x2+4x¡Üc1£¬¼´x2-4x+3¡Ý0£¬
½âµÃx¡Ü1»òx¡Ý3£®¡­£¨2·Ö£©
ËùÒÔ´æÔÚ×î´óµÄʵÊý¦Ë=1£¬
ʹµÃµ±x¡Ü¦Ëʱ£¬f£¨x£©¡Ü
an
n+1
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£®£¨2·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏʽ¡¢¼«ÏÞµÄÇ󷨣¬Ì½Ë÷ʵÊýÊÇ·ñ´æÔÚ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£¬¶ÔÊýѧ˼άµÄÒªÇó½Ï¸ß£¬½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¼Î¶¨ÇøÒ»Ä££©Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ô²x2+y2=r2£¨r£¾0£©ÄÚÇÐÓÚÕý·½ÐÎABCD£¬ÈÎȡԲÉÏÒ»µãP£¬Èô
OP
=a•
OA
+b•
OB
£¨a¡¢b¡ÊR£©£¬Ôòa¡¢bÂú×ãµÄÒ»¸öµÈʽÊÇ
a2+b2=
1
2
a2+b2=
1
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¼Î¶¨ÇøÒ»Ä££©ÔÚÒ»¸öС×éÖÐÓÐ5ÃûÄÐͬѧ£¬4ÃûŮͬѧ£¬´ÓÖÐÈÎÒâÌôÑ¡2Ãûͬѧ²Î¼Ó½»Í¨°²È«Ö¾Ô¸Õ߻£¬ÄÇôѡµ½µÄ2Ãû¶¼ÊÇŮͬѧµÄ¸ÅÂÊΪ
1
6
1
6
£¨½á¹ûÓ÷ÖÊý±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¼Î¶¨ÇøÒ»Ä££©ÈçͼËùʾµÄËã·¨¿òͼ£¬ÔòÊä³öSµÄÖµÊÇ
90
90
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¼Î¶¨ÇøÒ»Ä££©Ò»¸öÉÈÐεİ뾶Ϊ3£¬ÖÐÐĽÇΪ
¦Ð2
£¬½«ÉÈÐÎÒÔÒ»Ìõ°ë¾¶ËùÔÚÖ±ÏßΪÖáÐýתһÖÜËù³ÉµÄ¼¸ºÎÌåµÄÌå»ýÊÇ
18¦Ð
18¦Ð
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸