精英家教网 > 高中数学 > 题目详情
用数学归纳法证明:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2n(2n+2)
=
n
4(n+1)
(其中n∈N*).
分析:按数学归纳法的证明步骤.特别注意递推的步骤要符合假设的要求.
解答:证明:(1)当n=1时,等式左边=
1
2×4
=
1
8
,等式右边=
1
4(1+1)
=
1
8
,∴等式成立.
(2)假设n=k(k≥1.k∈N*)时等式成立,
1
2×4
+
1
4×6
+
1
6×8
++
1
2k(2k+2)
=
k
4(k+1)
成立,
那么当n=k+1时,
1
2×4
+
1
4×6
+
1
6×8
++
1
2k(2k+2)
+
1
2(k+1)[2(k+1)+2]

=
k
4(k+1)
+
1
4(k+1)(k+2)

=
k(k+2)+1
4(k+1)(k+2)

=
(k+1)2
4(k+1)(k+2)

=
k+1
4[(k+1)+1]

即n=k+1时等式成立.由(1)、(2)可知,对任意n∈N*等式均成立.
点评:本题主要考查数学归纳法,数学归纳法包括两个步骤,缺一不可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}满足a1=
12
Sn=n2an(n≥1)

(1)求S1,S2,S3并猜想Sn
(2)用数学归纳法证明(1)中猜想的正确性.

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式1+
1
2
+
1
3
+…+
1
2n-1
n
2
(n∈N*),第二步由k到k+1时不等式左边需增加(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南通一模)用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=
n(n+1)(n+2)(n+3)4
(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+…+
1
2n
,第一步应该验证左式是
1-
1
2
1-
1
2
,右式是
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:1+3+5+…+(2n-1)=n2

查看答案和解析>>

同步练习册答案