£¨1£©Ö¤Ã÷£ºP£¨x0£¬y0£©µ½Ö±ÏßAx+By+C=0µÄ¾àÀ빫ʽΪd=
|Ax0+By0+C|
A2+B2
£®
£¨2£©ÒÑÖª£ºÔÚ¿Õ¼äÖ±½Ç×ø±êϵÖУ¬ÈýÔªÒ»´Î·½³ÌAx+By+Cz+D=0£¨ÆäÖÐA£¬B£¬C£¬DΪ³£Êý£¬ÇÒA£¬B£¬C²»È«ÎªÁ㣩±íʾƽÃ棬
n
=(A£¬B£¬C)
Ϊ¸ÃƽÃæµÄÒ»¸ö·¨ÏòÁ¿£®ÇëÀà±Èµãµ½Ö±ÏߵľàÀ빫ʽ£¬Ð´³ö¿Õ¼äµÄµãP£¨x0£¬y0£¬z0£©µ½Æ½ÃæAx+By+Cz+D=0µÄ¾àÀ빫ʽ£¬²¢Îª¼ÓÒÔÖ¤Ã÷£®
·ÖÎö£º£¨1£©Ö¤·¨Ò»ÀûÓÃÏòÁ¿µÄÊýÁ¿»ýÔËË㣬Çó³ö
PR
ÔÚÖ±Ïߵĵ¥Î»·¨ÏòÁ¿ÉϵÄͶӰµÄ¾ø¶ÔÖµ¼´¿É£»
Ö¤·¨¶þ£ºÉèA¡Ù0£¬B¡Ù0£¬ÕâʱlÓëxÖá¡¢yÖᶼÏཻ£¬¹ýµãP×÷xÖáµÄƽÐÐÏߣ¬½»lÓÚµãR£¨x1£¬y0£©£»×÷yÖáµÄƽÐÐÏߣ¬½»lÓÚµãS£¨x0£¬y2£©£¬·Ö±ðÇó³ö|
RS
|¡¢|
PR
|¡¢|
PS
|ÓÉÈý½ÇÐÎÃæ»ý¹«Ê½¿ÉÖª£ºd•|
RS
|=|
PR
|•|
PS
|¼´¿ÉµÃ³ö£®
£¨2£©Àà±È£¨1£©µÄÖ¤Ã÷·½·¨ºÍ½áÂÛ£¬¿ÉÉèR£¨x£¬y£¬z£©ÊÇƽÃæAx+By+Cz+D=0ÉÏÈÎÒâÒ»µã£¬
n
=(A£¬B£¬C)
Ϊ¸ÃƽÃæµÄÒ»¸ö·¨ÏòÁ¿£¬
PR
=(x-x0£¬y-y0£¬z-z0)
£¬
Ax+By+Cz=-D£¬ÔÙÀûÓù«Ê½d=
|
PR
n
|
|
n
|
¼´¿ÉµÃ³ö£®
½â´ð£º£¨1£©Ö¤·¨Ò»£ºÉèRÊÇÖ±ÏßÉÏÈÎÒâÒ»µã£¬ÔòR£¨x£¬y£©£¬Ö±Ïߵķ½ÏòÏòÁ¿Îª
m
=(-B£¬A)
£¬Ôò¿ÉÈ¡Ö±Ïß·¨ÏòÁ¿Îª
PQ
=(A£¬B)
£¬
PR
=(x-x0£¬y-y0)
£¬£¨ÌáÐÑQ²»Ò»¶¨ÔÚÖ±ÏßÉÏ£©£¬
¡àd=
|
PR
PQ
|
|
PQ
|
=
|A(x-x0)+B(y-y0)|
A2+B2
=
|Ax0+By0+C|
A2+B2
£®
Ö¤·¨¶þ£ºÉèA¡Ù0£¬B¡Ù0£¬ÕâʱlÓëxÖá¡¢yÖᶼÏཻ£¬¹ýµãP×÷xÖáµÄƽÐÐÏߣ¬½»lÓÚµãR£¨x1£¬y0£©£»
×÷yÖáµÄƽÐÐÏߣ¬½»lÓÚµãS£¨x0£¬y2£©£¬
ÓÉ
A1x1+By0+C=0
Ax0+By2+C=0
µÃx1=
-By0-C
A
£¬y2=
-Ax0-C
B
£®
¡à|
PR
|=|x0-x1|=|
Ax0+By0+C
A
|
£¬
|
PS
|=|y0-y2|=|
Ax0+By0+C
B
|
£¬
|
RS
|=
PR2+PS2
=
A2+B2
|AB|
¡Á|Ax0+By0+C|
ÓÉÈý½ÇÐÎÃæ»ý¹«Ê½¿ÉÖª£ºd•|
RS
|=|
PR
|•|
PS
|
¡àd=
|Ax0+By0+C|
A2+B2

¿ÉÖ¤Ã÷£¬µ±A=0ʱÈÔÊÊÓã®
£¨2£©d=
|Ax0+By0+Cz0+D|
A2+B2+C2
£¬
ÉèR£¨x£¬y£¬z£©ÊÇƽÃæAx+By+Cz+D=0ÉÏÈÎÒâÒ»µã£¬
¡ß
n
=(A£¬B£¬C)
Ϊ¸ÃƽÃæµÄÒ»¸ö·¨ÏòÁ¿£¬
PR
=(x-x0£¬y-y0£¬z-z0)
£¬Ax+By+Cz=-D
¡àd=
|
PR
n
|
|
n
|
=
|A(x-x0)+B(y-y0)+C(z-z0)|
A2+B2+C2
=
|Ax0+By0+Cz0+D|
A2+B2+C2
£®
µãÆÀ£º±¾Ì⿼²éÁ˵㵽ֱÏߵľàÀ빫ʽÓëµãµ½Æ½ÃæµÄ¾àÀ빫ʽd=
|
PR
n
|
|
n
|
µÄÖ¤Ã÷·½·¨¡¢Àà±ÈÍÆÀíµÈ»ù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ·½·¨£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Å×ÎïÏßCµÄ·½³ÌΪy=ax2£¨a£¼0£©£¬¹ýÅ×ÎïÏßCÉÏÒ»µãP£¨x0£¬y0£©£¨x0¡Ù0£©×÷бÂÊΪk1£¬k2µÄÁ½ÌõÖ±Ïß·Ö±ð½»Å×ÎïÏßCÓÚA£¨x1£¬y1£©B£¨x2£¬y2£©Á½µã£¨P£¬A£¬BÈýµã»¥²»Ïàͬ£©£¬ÇÒÂú×ãk2+¦Ëk1=0£¨¦Ë¡Ù0ÇҦˡÙ-1£©£®
£¨¢ñ£©ÇóÅ×ÎïÏßCµÄ½¹µã×ø±êºÍ×¼Ïß·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßABÉÏÒ»µãM£¬Âú×ã
BM
=¦Ë
MA
£¬Ö¤Ã÷Ï߶ÎPMµÄÖеãÔÚyÖáÉÏ£»
£¨¢ó£©µ±¦Ë=1ʱ£¬ÈôµãPµÄ×ø±êΪ£¨1£¬-1£©£¬Çó¡ÏPABΪ¶Û½ÇʱµãAµÄ×Ý×ø±êy1µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
4x-a
1+x2
ÔÚÇø¼ä[m£¬n]ÉÏΪÔöº¯Êý£¬ÇÒf£¨m£©f£¨n£©=-4£®
£¨1£©µ±a=3ʱ£¬Çóm£¬nµÄÖµ£»
£¨2£©µ±f£¨n£©-f£¨m£©×îСʱ£¬
¢ÙÇóaµÄÖµ£»
¢ÚÈôP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¨a£¼x1£¼x2£¼n£©ÊÇf£¨x£©Í¼ÏóÉϵÄÁ½µã£¬ÇÒ´æÔÚʵÊýx0ʹµÃf¡ä(x0)=
f(x2)-f(x1)
x2-x1
£¬Ö¤Ã÷£ºx1£¼x0£¼x2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Å×ÎïÏßCµÄ·½³ÌΪy=ax2£¨a£¼0£©£¬¹ýÅ×ÎïÏßCÉÏÒ»µãP£¨x0£¬y0£©£¨x0¡Ù0£©×÷бÂÊΪk1¡¢k2µÄÁ½ÌõÖ±Ïß·Ö±ð½»Å×ÎïÏßCÓÚA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©Á½µã£¨P¡¢A¡¢BÈýµã»¥²»Ïàͬ£©£¬ÇÒÂú×ãk2+¦Ëk1=0£¨¦Ë¡Ù0ÇҦˡÙ-1£©£¬
£¨1£©ÉèÖ±ÏßABÉÏÒ»µãM£¬Âú×ã
BM
=¦Ë
MA
£¬Ö¤Ã÷Ï߶ÎPMµÄÖеãÔÚyÖáÉÏ£»
£¨2£©µ±¦Ë=1ʱ£¬ÈôµãPµÄ×ø±êΪ£¨1£¬-1£©£¬Çó¡ÏPABΪ¶Û½ÇʱµãAµÄ×Ý×ø±êy1µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ex-ax£¨a¡ÊR£©£®
£¨¢ñ£© Ð´³öº¯Êýy=f£¨x£©µÄͼÏóºã¹ýµÄ¶¨µã×ø±ê£»
£¨¢ò£©Ö±ÏßLΪº¯Êýy=¦Õ£¨x£©µÄͼÏóÉÏÈÎÒâÒ»µãP£¨x0£¬y0£©´¦µÄÇÐÏߣ¨PΪÇе㣩£¬Èç¹ûº¯Êýy=¦Õ£¨x£©Í¼ÏóÉÏËùÓеĵ㣨µãP³ýÍ⣩×ÜÔÚÖ±ÏßLµÄͬ²à£¬Ôò³Æº¯Êýy=¦Õ£¨x£©Îª¡°µ¥²àº¯Êý¡±£®
£¨i£©µ±a=
1
2
ÅжϺ¯Êýy=f£¨x£©ÊÇ·ñΪ¡°µ¥²àº¯Êý¡±£¬ÈôÊÇ£¬Çë¼ÓÒÔÖ¤Ã÷£¬Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
£¨i i£©ÇóÖ¤£ºµ±x¡Ê£¨-2£¬+¡Þ£©Ê±£¬ex+
1
2
x¡Ýln£¨
1
2
x+1£©+1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸