精英家教网 > 高中数学 > 题目详情
已知命题p:x1和x2是方程x2﹣mx﹣2=0的两个实根,不等式a2﹣5a﹣3≥|x1﹣x2|对任意实数m∈[﹣1,1]恒成立;命题q:不等式ax2+2x﹣1>0有解,若命题p是真命题,命题q是假命题,求a的取值范围.
解:∵x1,x2是方程x2﹣mx﹣2=0的两个实根

∴|x1﹣x2|==
∴当m∈[﹣1,1]时,|x1﹣x2|max=3,
由不等式a2﹣5a﹣3≥|x1﹣x2|对任意实数m∈[﹣1,1]恒成立.可得:
a2﹣5a﹣3≥3,
∴a≥6或a≤﹣1,
∴命题p为真命题时a≥6或a≤﹣1,
命题q:不等式ax2+2x﹣1>0有解.
①当a>0时,显然有解.
②当a=0时,2x﹣1>0有解
③当a<0时,∵ax2+2x﹣1>0有解, ∴△=4+4a>0,∴﹣1<a<0,
从而命题q:不等式ax2+2x﹣1>0有解时a>﹣1.
又命题q是假命题, ∴a≤﹣1,
故命题p是真命题且命题q是假命题时,
a的取值范围为a≤﹣1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:方程x2+(a2-1)x+a-2=0的两根为x1和x2,且x1<1<x2<2;命题q:方程|x|+|x-
12
|>a
恒成立;若P或q为真,P且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:江苏常州一中2007-2008学年度高三第一学期第一阶段考试试题数学 题型:044

已知命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:只有一个实数x满足不等式,若命题p是假命题,命题q是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011届浙江省杭州市西湖高级中学高三上学期开学考试数学卷 题型:解答题

已知:命题px1x2是方程x2mx-2=0的两个实根,且不等式a2-5a-3≥|x1x2|对任意实数m∈[-1,1]恒成立;命题q:函数y=lg(ax2xa)的定义域为R.
若命题p是假命题,命题q是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市高三上学期开学考试数学卷 题型:解答题

已知:命题px1x2是方程x2mx-2=0的两个实根,且不等式a2-5a-3≥|x1x2|对任意实数m∈[-1,1]恒成立;命题q:函数y=lg(ax2xa)的定义域为R.

若命题p是假命题,命题q是真命题,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题P:方程x2+(a2-1)x+a-2=0的两根为x1和x2,且x1<1<x2<2;命题q:方程|x|+|x-
1
2
|>a
恒成立;若P或q为真,P且q为假,求实数a的取值范围.

查看答案和解析>>

同步练习册答案