精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)=
-2x+b
2x+1+a
是奇函数.
(1)求a,b的值;
(2)证明:函数f(x)在R上是减函数;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
考点:奇偶性与单调性的综合,函数奇偶性的性质
专题:函数的性质及应用
分析:(1)利用奇函数定义f(x)=-f(x)中的特殊值求a,b的值;
(2)按按取点,作差,变形,判断的过程来即可.
(3)首先确定函数f(x)的单调性,然后结合奇函数的性质把不等式f(t2-2t)+f(2t2-k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围.
解答: 解:(1)因为f(x)是奇函数,函数的定义域为R,
∴f(x)=0,
-1+b
2+a
=0,
解得:b=1,
f(-1)=-f(1),
-2-1+1
1+a
=-
-2+1
4+a

解得:a=2
证明:(2)由(1)得:f(x)=
-2x+1
2x+1+2

设x1<x2,则f(x1)-f(x2)=
-2x1+1
2x1+1+2
-
-2x2+1
2x2+1+2
=
-2x1+2+2x2+2
(2x1+1+2)(2x2+1+2)

∵y=2x在实数集上是增函数且函数值恒大于0,
2x1+1+2>0,2x2+1+2>0,-2x1+2+2x2+2>0.
即f(x1)-f(x2)>0.
∴f(x)在R上是单调减函数;
(3)由(2)知f(x)在(-∞,+∞)上为减函数.
又因为f(x)是奇函数,
所以f(t2-2t)+f(2t2-k)<0,
等价于f(t2-2t)<-f(2t2-k)=f(k-2t2),
因为f(x)为减函数,由上式可得:t2-2t>k-2t2
即对一切t∈R有:3t2-2t-k>0,
从而判别式△=4+12k<0⇒k<-
1
3

所以k的取值范围是k<-
1
3
点评:本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l和双曲线
x2
9
-
y2
4
=1相交于A、B两点,线段AB的中点为M(与坐标原点O不重合),设直线l的斜率为k1(k1≠0),直线OM的斜率为k2,则k1k2=(  )
A、
2
3
B、-
2
3
C、-
4
9
D、
4
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体的棱长为2,在正方体的外接球内任取一点,则该点落在正方体内的概率为(  )
A、
2
B、
2
3
C、
3
π
D、
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=ax2(a>0),点P(1,-2).若存在两条都过点P且互相垂直的直线l1和l2,它们与二次函数y=ax2(a>0)的图象都没有公共点,则a的取值范围为(  )
A、(
1
8
,+∞)
B、[
1
8
,+∞)
C、(0,
1
8
D、(0,
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个由三根细棒PA、PB、PC组成的支架,三根细棒PA、PB、PC两两所成的角都为
60°,一个半径为1的小球放在支架上,则球心O到点P的距离是(  )
A、
3
2
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥AC,PC⊥BC,M为PB的中点,D为AB的中点,且△AMB为正三角形.
(1)求证:BC⊥平面PAC;
(2)若BC=4,PB=10,求四棱锥C-ADMP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其中a1=2,an-an-1=2n-1(n≥2,n∈N*
(1)求{an}的通项公式;
(2)若数列bn=2log2an-1,记数列{
2
bnbn+1
}的前n项和为Sn,求使Sn
9
10
成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax3+bx2+cx的极小值为-8,其导函数y=f′(x)的图象经过点(-2,0),(
2
3
,0),如图所示.
(1)求函数的单调区间和极值;
(2)若对x∈[-3,3]都有f(x)≥m2-14m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:(x+
5
2+y2=36,N(
5
,0),点P是圆M上的任意一点,线段NP的垂直平分线和半径MP相较于点Q.
(Ⅰ)当点P在圆M上运动时,求点Q的轨迹C的方程;
(Ⅱ)若圆x2+y2=4的切线与曲线C相交于A、B两点,求△AOB面积的最大值.

查看答案和解析>>

同步练习册答案