[ ]
科目:高中数学 来源: 题型:
已知F1、F2为椭圆
=1(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆离心率e=
,则椭圆的方程是( )
A.
=1 B.
=1
C.
=1 D.
=1
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)
已知椭圆
(a>b>0)的离心率e=
,连接椭圆的四个顶点得到的菱形的面积为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0).
(i)若
,求直线l的倾斜角;
(ii)若点Q
在线段AB的垂直平分线上,且
.求
的值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练22练习卷(解析版) 题型:填空题
椭圆Γ:
+
=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=
(x+c)与椭圆Γ的一个交点满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于 .
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江西省南昌市高三第二次模拟测试理科数学试卷(解析版) 题型:解答题
(本小题满分14分)
(1)已知等差数列{an}的前n项和为Sn,若m+n=s+t(m,n,s,t∈N*,且m≠n,s≠t),证明;
=
;
(2)注意到(1)中Sn与n的函数关系,我们得到命题:设抛物线x2=2py(p>0)的图像上有不同的四点A,B,C,D,若xA,xB,xC,xD分别是这四点的横坐标,且xA+xB=xC+xD,则AB∥CD,判定这个命题的真假,并证明你的结论
(3)我们知道椭圆和抛物线都是圆锥曲线,根据(2)中的结论,对椭圆
+
=1(a>b>0)提出一个有深度的结论,并证明之.
查看答案和解析>>
科目:高中数学 来源:2009-2010学年度新课标高三下学期数学单元测试4-文科 题型:选择题
(2009年济南模拟)已知椭圆
(a>b>0)与双曲线
(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是 ( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com