精英家教网 > 高中数学 > 题目详情
精英家教网四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,CD=
2
,AB=AC.
(Ⅰ)证明:AD⊥CE;
(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C-AD-E的大小.
分析:(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.
(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.
解答:精英家教网解:(1)取BC中点F,连接DF交CE于点O,
∵AB=AC,∴AF⊥BC,
又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.
tan∠CED=tan∠FDC=
2
2
,∴∠OED+∠ODE=90°,
∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.
(2)在面ACD内过C点作AD的垂线,垂足为G.
∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,
则∠CGE即为所求二面角的平面角.CG=
AC•CD
AD
=
2
3
3

DG=
6
3
EG=
DE2-DG2
=
30
3
CE=
6

cos∠CGE=
CG2+GE2-CE2
2CG•GE
=-
10
10

∠CGE=π-arccos(
10
10
)

即二面角C-AD-E的大小π-arccos(
10
10
)
点评:本题开叉证明通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥A-BCDE中,底面BCDE是直角梯形,∠BED=90°,BE∥CD,AB=6,BC=5,
CD
BE
=
1
3
,侧面ABE⊥底面BCDE,∠BAE=90°.
(1)求证:平面ADE⊥平面ABE;
(2)过点D作面α∥平面ABC,分别于BE,AE交于点F,G,求△DFG的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥 A-BCDE中,底面是直角梯形,其中 BC∥DE,∠BCD=90°,且 DE=CD=
1
2
BC,又AB=AE=
1
2
BC,AC=AD,
求证:面ABE⊥面BCD.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥A-BCDE中,△ABC是正三角形,四边形BCDE是矩形,且平面ABC⊥平面BCDE,AB=2,AD=4.
(1)若点G是AE的中点,求证:AC∥平面BDG;
(2)试问点F在线段AB上什么位置时,二面角B-CE-F的余弦值为
3
13
13

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥A-BCDE中,△ABC是正三角形,四边形BCDE是矩形,且平面ABC⊥平面BCDE,AB=2,AD=4.
(Ⅰ) 若点G是AE的中点,求证:AC∥平面BDG;
(II)若点F为线段AB的中点,求二面角B-CE-F的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥A-BCDE中,侧面△ADE是等边三角形,在底面等腰梯形BCDE中,CD∥BE,DE=2,CD=4,∠CDE=60°,M为DE的中点,F为AC的中点,AC=4.
(I)求证:平面ADE⊥平面BCD;
(II)FB∥平面ADE.

查看答案和解析>>

同步练习册答案