精英家教网 > 高中数学 > 题目详情
(2012•湖南模拟)如图,三棱锥P-ABC中,侧面PAC⊥底面ABC,∠APC=90°,且AB=4,AP=PC=2,BC=2
2

(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)若E为侧棱PB的中点,求直线AE与底面ABC所成角的正弦值.
分析:(Ⅰ)先证明PA⊥PC,再证明BC⊥平面ACP,可得PA⊥BC,利用线面垂直的判定,可得PA⊥平面PBC;
(Ⅱ)取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,证明∠EAH为直线AE与底面ABC所成角,且sin∠EAH=
EH
AE
,由此可得结论.
解答:(Ⅰ) 证明:由∠APC=90°知,PA⊥PC,
又AP=PC=2,所以AC=2
2
,…(2分)
又AB=4,BC=2
2
,所以AC2+BC2=AB2
所以∠ACB=90°,即BC⊥AC,…(3分)
又侧面PAC⊥底面ABC,侧面PAC∩底面ABC平面=AC,BC?平面ABC,
所以BC⊥平面ACP,所以PA⊥BC,…(5分)
又PC∩BC=C,所以PA⊥平面PBC…(6分)
(Ⅱ)解:如图,取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,
因为PA=PC,所以PO⊥AC,
∵BC⊥平面ACP,PO?平面ACP
∴BC⊥PO
∵AC∩BC=C,∴PO⊥平面ABC,
又E为侧棱PB的中点,H为OB中点,∴EH∥PO
∴EH⊥平面ABC,…(8分)
∴∠EAH为直线AE与底面ABC所成角,且sin∠EAH=
EH
AE
…(10分)
又PO=
1
2
AC=
2
,∴EH=
1
2
PO=
2
2

∵PA⊥平面PBC,PB?平面PBC,∴AP⊥PB,∴PB=2
3
,PE=
3

∴AE=
7
,…(11分)
∴sin∠EAH=
EH
AE
=
2
2
7
=
14
14

所以直线AE与底面ABC所成角的正弦值为
14
14
.…(12分)
点评:本题主要考查了直线与平面垂直的判定,考查线面角,掌握线面垂直的判定,正确作出线面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知函数f(x)=
1
2
x2+x-(x+1)ln(x+1)

(1)判断f(x)的单调性;
(2)记φ(x)=f′(x-1)-k(x-1),若函数φ(x)有两个零点x1,x2(x1<x2),求证:φ′(
x1+x2
2
)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知向量
m
=(2cos2x,
3
),
n
=(1,sin2x)
,函数f(x)=
m
n

(1)求函数f(x)的对称中心;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=3,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)设函数y=f(x)在区间(a,b)的导函数f′(x),f′(x)在区间(a,b)的导函数f″(x),若在区间(a,b)上的f″(x)<0恒成立,则称函数f(x)在区间(a,b)上为“凸函数”,已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
,若当实数m满足|m|≤2时,函数f(x)在区间(a,b)上为“凸函数”,则b-a的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知函数f(x)=
-x-1(x<-2)
x+3(-2≤x≤
1
2
)
5x+1(x>
1
2
)
(x∈R),
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;命题q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)设曲线y=xn+1(n∈N)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1•x2•x3•…•x2012的值为
1
2013
1
2013

查看答案和解析>>

同步练习册答案