精英家教网 > 高中数学 > 题目详情
15.已知直线l1:y=2x+3,直线l2与l1关于直线y=x对称,直线l3⊥l2,则l3的斜率为-2.

分析 由直线的对称性先确定直线l2的斜率,再由两条直线垂直的条件得出l3的斜率的斜率.

解答 解:依题意得,直线l2的方程是x=2×y+3,即 y=$\frac{1}{2}$x+$\frac{3}{2}$,其斜率是$\frac{1}{2}$.由l3⊥l2得,l3的斜率等于-2.
故答案为:-2.

点评 本题考查求直线的对称直线方程的方法,以及两直线垂直的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x+$\frac{1}{x}$,x>0.
(1)证明:当0<x<1时,函数f(x)是减函数;当x≥1时,函数f(x)是增函数.
(2)求函数f(x)=x+$\frac{1}{x}$,x>0的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=-x2-4x-4,x∈[a,a+1](a∈R),则f(x)的最大值为$\left\{\begin{array}{l}-{a}^{2}-6a-9,a≤-3\\ 0,-3<a<-2\\-{a}^{2}-4a-4,a≥-2\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=-x2+2ax,当x∈[0,5]时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知Sn为数列{an}的前n项和,a1=1,Sn+1=4an+2.
(1)设数列{bn}中,bn=an+1-2an,求证:{bn}是等比数列.
(2)设数列{cn}中,cn=$\frac{{a}_{n}}{{2}^{n}}$,求证:{cn}是等差数列.
(3)求数列{an}的通项公式及前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知f($\frac{2}{x}$+1)=lgx,求f(x);
(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);
(3)定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.下面的对应哪些是从M到N的映射?哪些是函数?
(1)设M=R,N=R,对应关系f:y=$\frac{1}{x}$,x∈M;
(2)设M={平面上的点},N={(x,y)|x,y∈R},对应关系f:M中的元素对应它在平面上的坐标;
(3)设M={高年级的全体同学},N={0,1},对应关系f:M中的男生对应1,女生对应0;
(4)设M=R,N=R,对应关系:f(x)=2x2+1,x∈M;
(5)设M={1,4,9},N={-1,1,-2,2,3,-3},对应关系:M中的元素开平方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\sqrt{{a}^{2}-4a+4}$=2-a,函数f(x)=$\frac{1}{{3}^{x}}$-3x,x∈R.
(1)求f(a)的取值范围;
(2)若f(ea-m)+f(ea-1)≥0恒成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{x-2,x≤-1}\\{{x}^{2}+1,-1<x<2}\end{array}\right.$,若f(x)=3,则x的值是$\sqrt{2}$.

查看答案和解析>>

同步练习册答案