精英家教网 > 高中数学 > 题目详情
若椭圆
x2
4
+
y2
a2
=1与双曲线
x2
a
-
y2
2
=1有相同的焦点,则a的值是(  )
A、1B、-1C、±1D、2
分析:求出双曲线的两焦点坐标,即为椭圆的焦点坐标,即可得到m,b的值,然后根据椭圆的定义得到a,最后利用a,b,c的关系即可求出b的值,得到椭圆及双曲线的方程.
解答:解:由题意可知椭圆
x2
4
+
y2
a2
=1
的半焦距c的平方为:
c2=4-a2
双曲线
x2
a
-
y2
2
=1
的半焦距c的平方为:
c2=a+2;
∴4-a2=a+2,
解得:a=1.(负值舍去)
故选A.
点评:此题考查学生掌握圆锥曲线的共同特征,会求椭圆的标准方程,是一道综合题.本题还考查双曲线的标准方程,以及双曲线的简单性质的应用,利用条件求出a,b,c值,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:直线x-2y+3=0与抛物线y2=ax(a>0)没有交点;q:方程
x2
4-a
+
y2
a-1
=1
表示椭圆;若p∧q为真命题,则实数a的取值范围
(1,
5
2
)∪(
5
2
,3)
(1,
5
2
)∪(
5
2
,3)

查看答案和解析>>

同步练习册答案