| A. | [$\frac{65}{9}$,25] | B. | [$\frac{36}{5}$,25] | C. | [16,25] | D. | [9,25] |
分析 由约束条件作出可行域,再由x2+(y+2)2的几何意义,即可行域内的动点与定点(0,-2)距离的平方求解.
解答 解:由约束条件$\left\{\begin{array}{l}x-2y-2≥0\\ 2x+y-4≥0\\ x-y-3≤0\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x-y-3=0}\\{2x+y-4=0}\end{array}\right.$,解得B($\frac{7}{3},-\frac{2}{3}$),
联立$\left\{\begin{array}{l}{x-2y-2=0}\\{x-y-3=0}\end{array}\right.$,解得C(4,1),
由图可知,点(0,-2)与可行域内点B($\frac{7}{3},-\frac{2}{3}$)的距离的平方最小为$(\frac{7}{3})^{2}+(-\frac{2}{3}+2)^{2}=\frac{65}{9}$;
点(0,-2)与可行域内点C(4,1)的距离的平方最大为42+(-2-1)2=25.
∴x2+(y+2)2的取值范围是[$\frac{65}{9}$,25].
故选:A.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法与数学转化思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | $2\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若f(3)≥9成立,则对于任意k∈N*,均有f(k)≥k2成立 | |
| B. | 若f(3)≥9成立,则对于任意k≥3,k∈N*,均有f(k)<k2成立 | |
| C. | 若f(3)≥9成立,则对于任意k<3,k∈N*,均有f(k)<k2成立 | |
| D. | 若f(3)=9成立,则对于任意k≥3,k∈N*,均有f(k)≥k2成立 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com