精英家教网 > 高中数学 > 题目详情
已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足:a2•a3=45,a1+a4=14.
(1)求数列{an}的通项公式;
(2)令bn=
2Sn
2n-1
,f(n)=
bn
(n+25)•bn+1
(n∈N*),求f(n)的最大值.
(Ⅰ)∵数列an}是等差数列,
∴a2•a3=45,a1+a4=a2+a3=14.
a2=3
a3=9
a2=9
a3=5

∵公差d>0,
a2=3
a3=9
,解得d=4,a1=1.
∴an=1+4(n-1)=4n-3.
(Ⅱ)∵Sn=na1+
n(n-1)d
2
=2n2-n

bn=
2Sn
2n-1
=2n,
∴f(n)=
bn
(n+25)•bn+1
=
2n
(n+25)?2(n+1)
=
n
n2+26n+5
=
1
n+
25
n
+26
1
26+2
25
n
•n
=
1
26+10
=
1
36

当且仅当n=
25
n
,即n=5时,f(n)取得最大值
1
36
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

数列{an}是等差数列,Sn是前n项和,a4=3,S5=25
(1)求数列{an}的通项公式an
(2)设bn=|an|,求b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

根据程序框图,将输出的x,y值依次分别记为x1,x2,…,x2013;y1,y2,…,y2013
(Ⅰ)写出数列{xn}的递推公式,求{xn}的通项公式;
(Ⅱ)写出数列{yn}的递推公式,求{yn}的通项公式;
(Ⅲ)求数列{xn+yn}的前n项和Sn(n≤2013).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足对任意的n∈N+,都有an>0,且a13+a23+…+an3=(a1+a2+…+an2
(1)求数列{an}的通项公式an
(2)设数列{
1
anan+2
}的前n项和为Sn,不等式Sn
1
3
loga(1-a)对任意的正整数n恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}满足a3=6,a4+a6=20
(1)求通项an
(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设递增等比数列{an}的前n项和为Sn,且a2=3,S3=13,数列{bn}满足b1=a1,点P(bn,bn+1)在直线x-y+2=0上,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
bn
an
,数列{cn}的前n项和Tn,若Tn>2a-1恒成立(n∈N*),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知不等式x2-2x-3<0的整数解由小到大构成数列{an}前三项,若数列{an+2a2}的前n项和为Sn,则Sn=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an},an≠0,a1=
5
6
,若以an-1,an为系数的二次方程:an-1x2+anx-1=0(n≥2,n∈N*)都有两个不同的根α,β满足3α-αβ+3β+1=0
(1)求证:{an-
1
2
}
为等比数列;
(2)求{an}的通项公式并求前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是数列项和,且,对,总有,则     

查看答案和解析>>

同步练习册答案