精英家教网 > 高中数学 > 题目详情
设f(x)=(ax+b)sinx+(cx+d)cosx,若已知f′(x)=xcosx,则f(x)=(    )
A.xsinx
B.xsinx-xcosx
C.xsinx+cosx
D.xcosx
C
∵f′(x)=[(ax+b)sinx]′+[(cx+d)cosx]′
=(ax+b)′sinx+(ax+b)(sinx)′+(cx+d)′cosx+(cx+d)(cosx)′
=asinx+(ax+b)cosx+ccosx-(cx+d)sinx
=(a-d-cx)sinx+(ax+b+c)cosx.
为使f′(x)=xcosx,应满足
解方程组,得
从而可知,f(x)=xsinx+cosx.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数
(1)讨论f(x)在区间(0,1)上的单调性;
(2)当a∈[3,+∞)时,曲线上总存在相异的两点,使得曲线在点P,Q处的切线互相平行,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)设,求函数的图像在处的切线方程;
(2)求证:对任意的恒成立;
(3)若,且,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数的定义域是,其中常数.(注:
(1)若,求的过原点的切线方程.
(2)证明当时,对,恒有.
(3)当时,求最大实数,使不等式恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(e为自然对数的底数).
(1)设曲线处的切线为,若与点(1,0)的距离为,求a的值;
(2)若对于任意实数恒成立,试确定的取值范围;
(3)当上是否存在极值?若存在,请求出极值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,).
(Ⅰ)当时,求曲线在点处切线的方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某银行准备新设一种定期存款业务,经预测,存款量与存款利率成正比,比例系数为k(k>0),贷款的利率为4.8%,假设银行吸收的存款能够全部贷出去.若存款利率为x(x∈(0,0.048)),则银行可获得最大收益时,存款利率为 (  )
A.0.03
B.0.024
C.0.02
D.0.016

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在高台跳水运动中,运动员相对于水面的高度与起跳后的时间存在函数关系,则瞬时速度为0的时刻是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设曲线在点(1,1)处的切线与轴的交点的横坐标为,则的值为
A.B.C.D.1

查看答案和解析>>

同步练习册答案