精英家教网 > 高中数学 > 题目详情
设函数的定义域是,其中常数.(注:
(1)若,求的过原点的切线方程.
(2)证明当时,对,恒有.
(3)当时,求最大实数,使不等式恒成立.
(1)切线方程为.(2)详见解析.(3)的最大值是6.

试题分析:(1)一般地,曲线在点处的切线方程为:.注意,此题是求过原点的切线,而不是求在原点处切线方程,而该曲线又过原点,故有原点为切点和原点不为切点两种情况.当原点不为切点时需把切点的坐标设出来.(2)不等式可化为,要证明这个不等式,只需利用导数求出上的值域即可.
(3)令,则问题转化为恒成立.注意到,所以如果单调增,则必有恒成立.下面就通过导数研究的单调性.
试题解析:(1).若切点为原点,由知切线方程为;
若切点不是原点,设切点为,由于,故由切线过原点知,在内有唯一的根.
,故切线方程为.
综上所述,所求切线有两条,方程分别为.
(2)当时,令,则,故当时恒有,即 在单调递减,故恒成立.
,故,即,此即

(3)令,则,且,显然有,且 的导函数为

,则,易知恒成立,从而对恒有,即单调增,从而恒成立,从而单调增,恒成立.
,则,存在,使得恒成立,即恒成立,再由知存在,使得恒成立,再由便知不能对恒成立.
综上所述,所求的最大值是6.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-mx(mR).
(1)若曲线y=f(x)过点P(1,-1),求曲线y=f(x)在点P处的切线方程;
(2)求函数f(x)在区间[1,e]上的最大值;
(3)若函数f(x)有两个不同的零点x1,x2,求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知的导函数,即,…,,则 (     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若存在,使得,求a的取值范围;
(2)若有两个不同的实数解,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(,为自然对数的底数).
(1)若曲线在点处的切线平行于轴,求的值;
(2)求函数的极值;
(3)当的值时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,证明:
(2)若对恒成立,求实数的取值范围;
(3)当时,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,如果存在实数,使,则的值(  )
A.必为正数B.必为负数C.必为非负D.必为非正

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=(ax+b)sinx+(cx+d)cosx,若已知f′(x)=xcosx,则f(x)=(    )
A.xsinx
B.xsinx-xcosx
C.xsinx+cosx
D.xcosx

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,且.现给出如下结论:
;②;③;④.
其中正确结论的序号是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步练习册答案