¶ÔÓÚÊýÁÐ{an}£¬¶¨ÒåÊýÁÐ{an+1-an}Ϊ{an}µÄ¡°²îÊýÁС±£®
£¨I£©Èô{an}µÄ¡°²îÊýÁС±ÊÇÒ»¸ö¹«²î²»ÎªÁãµÄµÈ²îÊýÁУ¬ÊÔд³ö{an}µÄÒ»¸öͨÏʽ£»
£¨II£©Èôa1=2£¬{an}µÄ¡°²îÊýÁС±µÄͨÏîΪ2n£¬ÇóÊýÁÐ{an}µÄǰnÏîºÍSn£»
£¨III£©¶ÔÓÚ£¨II£©ÖеÄÊýÁÐ{an}£¬ÈôÊýÁÐ{bn}Âú×ãanbnbn+1=-21•28£¨n¡ÊN*£©£¬ÇÒb4=-7£®
Ç󣺢ÙÊýÁÐ{bn}µÄͨÏʽ£»¢Úµ±ÊýÁÐ{bn}ǰnÏîµÄ»ý×î´óʱnµÄÖµ£®
¡¾´ð°¸¡¿
·ÖÎö£º£¨1£©¸ù¾ÝÌâÒâд³ö·ûºÏÌâÒâµÄʽ×Ó£®
£¨2£©ÒÀÌâÒâµÃ{a
n}Êǹ«±ÈÊýΪ2µÄµÈ±ÈÊýÁУ¬¼ÆËã³öÊýÁÐ{a
n}µÄǰnÏîºÍS
n
£¨3£©¸ù¾ÝÌâÒâ¼ÆËã³öÊýÁÐ{b
n}µÄͨÏʽ£¬¼ÆËã³öÊýÁÐ{b
n}ǰnÏîµÄ»ýΪT
n£¬µ±ÊýÁÐ{b
n}ǰnÏîµÄ»ý×î´óʱnµÄÖµ£®
½â´ð£º½â£º£¨¢ñ£©Èça
n=n
2£®£¨´ð°¸²»Î©Ò»£¬½á¹ûӦΪa
n=An
2+Bn+CµÄÐÎʽ£¬ÆäÖÐA¡Ù0£©£¨3·Ö£©
£¨¢ò£©ÒÀÌâÒâa
n+1-a
n=2
n£¬n=1£¬2£¬3£¬
ËùÒÔa
n=£¨a
n-a
n-1£©+£¨a
n-1-a
n-2£©+£¨a
n-2-a
n-3£©++£¨a
2-a
1£©+a
1=2
n-1+2
n-2+2
n-3++2=2
n£®£¨5·Ö£©
´ÓÃæ{a
n}Êǹ«±ÈÊýΪ2µÄµÈ±ÈÊýÁУ¬
ËùÒÔ

£¨7·Ö£©
£¨¢ó£©ÓÉa
nb
nb
n+1=-21•2
n¼°a
n-1b
n-1b
n=-21•2
n£¬Á½Ê½Ïà³ýµÃ

£¬
ËùÒÔÊýÁÐ{b
2n-1}£¬{b
2n}·Ö±ðÊǹ«±ÈΪ

µÄµÈ±ÈÊýÁÐ
ÓÉb
4=-7µÃb
2=-14£®
Áîn=1£¬ÓÉa
1b
1b
2=-21•2
nµÃb
1=3•2
6£®
ËùÒÔÊýÁÐ{b
n}µÄͨÏîΪ

£¨10·Ö£©
¢Ú¼ÇÊýÁÐ{b
n}ǰnÏîµÄ»ýΪT
n£®
Áî

£¬
¼´

ËùÒÔµ±nÊÇÆæÊýʱ£¬|b
1b
2|£¾1£¬|b
3b
4|£¾1£¬£¬|b
11b
12|£¾1£¬|b
13b
14|£¼1£¬|b
15b
16|£¼1£¬
´Ó¶ø|T
2|£¼|T
4|£¼|T
12|£¬|T
12|£¾|T
14|£¾£®
µ±nÊÇżÊýʱ£¬|b
2b
3|£¾1£¬|b
4b
5|£¾1£¬£¬|b
12b
13|£¾1£¬|b
14b
15|£¼1£¬|b
16b
17|£¼1£¬
´Ó¶ø|T
1|£¼|T
3|£¼|T
13|£¬|T
13|£¾|T
15|£®
×¢Òâµ½T
12£¾0£¬T
13£¾0£¬ÇÒT
13=b
13T
12=3T
12£¾T
12£¬
ËùÒÔµ±ÊýÁÐ{b
n}ǰnÏîµÄ»ýT
n×î´óʱn=13£®£¨14·Ö£©
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÊýÁÐͨÏʽµÄÇó½â¼°Ç°nÏî»ýµÄÇó½â£®