精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+(a-3)x+a2-3a(a为常数).
(1)如果对任意x∈[1,2],f(x)>a2恒成立,求实数a的取值范围;
(2)设实数p,q,r满足:p,q,r中的某一个数恰好等于a,且另两个恰为方程f(x)=0的两实根,判断①p+q+r,②p2+q2+r2,③p3+q3+r3是否为定值?若是定值请求出:若不是定值,请把不是定值的表示为函数g(a),并求g(a)的最小值;
(3)对于(2)中的g(a),设H(a)=-
16
[g(a)-27]
,数列{an}满足an+1=H(an)(n∈N*),且a1∈(0,1),试判断an+1与an的大小,并证明之.
分析:(1)由f(x)>a2,可得x2+(a-3)x-3a>0,所以(x-3)(x+a)>0对x∈[1,2]恒成立,又x-3<0恒成立,可得x+a<0对x∈[1,2]恒成立,得出a<-x,又-x∈[-2,-1],即可求出a的取值范围;
(2)由△=(a-3)2-4(a2-3a)≥0得:-1≤a≤3,不妨设a=p,则q,r恰为方程两根,由韦达定理讨论即可得出答案.
(3)由(2)得H(a)=-
1
6
(3a3-9a2)
,通过求导数的方法即可求出函数的单调区间,再根据数列的知识即可求解.
解答:解:(1)∵f(x)>a2,∴x2+(a-3)x-3a>0,
∴(x-3)(x+a)>0对x∈[1,2]恒成立,
又∵x-3<0恒成立,∴x+a<0对x∈[1,2]恒成立,
∴a<-x,又-x∈[-2,-1],
∴a<-2.
(2)由△=(a-3)2-4(a2-3a)≥0得:-1≤a≤3,
不妨设a=p,则q,r恰为方程两根,由韦达定理得:
①p+q+r=3,qr=a2-3a,
②p2+q2+r2=a2+(q+r)2-2pr=a2+(3-a)2-2(a2-3a)=9,
③p3+q3+r3=a3+(q3+r3)=a3+(q+r)[q2-qr+r2]=3a3-9a2+27.
设g(a)=3a3-9a2+27,求导得:g(a)=9a2-18a=9a(a-2),
当a∈[2,3]时,g(a)>0,g(a)递增;当a∈[0,2]时,g(a)<0,g(a)递减;
当a∈[-1,0]时,g(a)>0,g(a)递增,
∴g(a)在[-1,3]上的最小值为min{g(-1),g(2)}=min{15,15}=15.
(3)由(2)得H(a)=-
1
6
(3a3-9a2)

如果a∈(0,1),则H′(a)=3a-
3
2
a2=3a(1-
1
2
a)>0
,∴H(a)在(0,1)为递增函数,
易知H(a)∈(0,1),∴a1∈(0,1)?a2∈(0,1),an∈(0,1)?an+1∈(0,1),
又∵an+1-an=-
1
2
an3+
3
2
an2-an=-
1
2
an(an-2)(an-1)<0

∴an+1<an
点评:本题考查了函数的恒成立问题及数列的应用,难度较大,关键是掌握用导数求函数的单调区间.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案