精英家教网 > 高中数学 > 题目详情
(2008•崇明县一模)已知α∈(
π
2
,π)
sinα=
3
5
,则tan(α+
4
)
等于
-7
-7
分析:由α的范围,得到cosα值小于0,根据sinα的值,利用同角三角函数间的平方关系sin2α+cos2α=1,求出cosα的值,进而求出tanα的值,然后把所求式子利用两角和与差的正切函数公式及特殊角的三角函数值化简后,将tanα的值代入即可求出值.
解答:解:∵α∈(
π
2
,π)
sinα=
3
5

∴cosα=-
1-sin2α
=-
4
5

∴tanα=
sinα
cosα
=-
3
4

tan(α+
4
)
=
tanα-1
1+tanα
=
-
3
4
-1
1-
3
4
=-7.
故答案为:-7
点评:此题考查了同角三角函数间的基本关系,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握基本关系及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•崇明县一模)对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)·f(x2);②f(x1•x2)=f(x1)+f(x2);③
f(x1)-f(x2)
x1-x2
>0;④f(
x1+x2
2
)
f(x1)+f(x2)
2

当f(x)=lgx时,上述结论中正确结论的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•崇明县一模)集合A={x|
x-1x+1
<0}
,B={x||x-b|<a},若“a=1”是“A∩B≠φ”的充分条件,则b的取值范围是
-2<b<2
-2<b<2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•崇明县一模)已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是
(0,8)
(0,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•崇明县一模)数列{an}满足
an+1
an
=2
(n∈N*),且a2=3,则an=
3
2
×2n-1
3
2
×2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•崇明县一模)已知:函数fn(x)(n∈N*)的定义域为(-∞,0)∪(0,+∞),其中f1(x)=x+1+
1
x
,并且当n>1且n∈N*时,满足fn(x)-fn-1(x)=xn+
1
xn

(1)求函数fn(x)(n∈N*)的解析式;
(2)当n=1,2,3时,分别研究函数fn(x)的单调性与值域;
(3)借助(2)的研究过程或研究结论,提出一个类似(2)的研究问题,并写出问题的研究过程与研究结论.
【第(3)小题将根据你所提出问题的质量,以及解决所提出问题的情况进行分层评分】

查看答案和解析>>

同步练习册答案