精英家教网 > 高中数学 > 题目详情
(2013•广州一模)函数y=(sinx+cosx)(sinx-cosx)是(  )
分析:利用二倍角公式化简函数的解析式为-cos2x,可得函数为偶函数,再求出函数的单调区间,从而得出结论.
解答:解:由于函数y=(sinx+cosx)(sinx-cosx)=sin2x-cos2x=-cos2x,故函数为偶函数,
故排除A、B.
令 2kπ-π≤2x≤2kπ,k∈z,求得 kπ-
π
2
≤x≤kπ,k∈z,故函数的减区间为[kπ-
π
2
,kπ],k∈z.
令2kπ≤2x≤2kπ+π,k∈z,求得 kπ≤x≤kπ+
π
2
,k∈z,故函数的增区间为[kπ,kπ+
π
2
],k∈z,
故选C.
点评:本题主要考查二倍角公式的应用,余弦函数的奇偶性以及单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•广州一模)
1
0
cosx
dx=
sin1
sin1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知经过同一点的n(n∈N*,n≥3)个平面,任意三个平面不经过同一条直线.若这n个平面将空间分成f(n)个部分,则f(3)=
8
8
,f(n)=
n2-n+2
n2-n+2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)函数f(x)=
2-x
+ln(x-1)
的定义域为
(1,2]
(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点.
(1)求证:PA∥平面BMD;
(2)求证:AD⊥PB;
(3)若AB=PD=2,求点A到平面BMD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知n∈N*,设函数fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R

(1)求函数y=f2(x)-kx(k∈R)的单调区间;
(2)是否存在整数t,对于任意n∈N*,关于x的方程fn(x)=0在区间[t,t+1]上有唯一实数解?若存在,求t的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案