精英家教网 > 高中数学 > 题目详情
11.设a,b,c大于0,则3个数:$a+\frac{1}{b}$+1,$b+\frac{1}{c}$+1,$c+\frac{1}{a}$+1的值(  )
A.都大于3B.至多有一个不大于3
C.都小于3D.至少有一个不小于3

分析 利用反证法:假设3个数:$a+\frac{1}{b}$+1,$b+\frac{1}{c}$+1,$c+\frac{1}{a}$+1都小于3,再利用基本不等式的性质得出矛盾.

解答 解:假设3个数:$a+\frac{1}{b}$+1,$b+\frac{1}{c}$+1,$c+\frac{1}{a}$+1都小于3,
则9>$a+\frac{1}{b}$+1+$b+\frac{1}{c}$+1+$c+\frac{1}{a}$+1≥3+2$\sqrt{a×\frac{1}{a}}$+2$\sqrt{b•\frac{1}{b}}$+2$\sqrt{c•\frac{1}{c}}$=9,
推出矛盾,因此假设不成立.
∴3个数:$a+\frac{1}{b}$+1,$b+\frac{1}{c}$+1,$c+\frac{1}{a}$+1的值至少有一个不小于3.
故选:D.

点评 本题考查了反证法、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C:ρcos2θ=2sinθ,过点P(0,1)的直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),直线l与轨迹C交于M,N两点.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.抛物线y2=2x上两点A,B,已知AB的中点在直线x=2上,F为抛物线焦点,则|AF|+|BF|=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线$ax+\frac{1}{a}y+2=0$与圆x2+y2=r2相切,则圆的半径最大时,a的值是±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a1=$\frac{1}{2}$,且anan+1+an+1-2an=0(n∈N).
(1)求a2,a3,a4的值;
(2)猜想数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数(2+i)(1-i)等于(  )
A.1-iB.2-iC.3+iD.3-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到y轴距离之和最小值是$\sqrt{17}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线y=kx+1,当k变化时,此直线被椭圆$\frac{{x}^{2}}{4}$+y2=1截得的最大弦长是(  )
A.4B.$\frac{4\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,椭圆的四个顶点所围成菱形的面积为$8\sqrt{2}$.
(Ⅰ)求圆的方程;
(Ⅱ)四边形ABCD的顶点在椭圆C上,且对角线AC,BD均过坐标原点O,若${k_{AC}}•{k_{BD}}=-\frac{1}{2}$.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围;
(2)证明:四边形ABCD的面积为定值.

查看答案和解析>>

同步练习册答案