精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在坐标原点O,长轴长为2
2
,离心率e=
2
2
,过右焦点F的直线l交椭圆于P,Q两点.
(1)求椭圆的方程;
(2)当直线l的斜率为1时,求△POQ的面积;
(3)若以OP,OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.
分析:(1)由已知,设出椭圆的方程,分析可得椭圆长轴长为2
2
,离心率e=
2
2
,可得a、c的值,进而可得b的值,代入所设的椭圆方程即可得答案;
(2)根据题意,设P(x1,y1),Q(x2,y2),联立两者方程即
x2+2y2=2
y=x-1
,可得3y2+2y-1=0,解得y1=-1,y2=
1
3
;由三角形面积公式,计算可得答案;
(3)根据题意,分情况讨论,①当直线l与x轴垂直时,易得其不合题意,②当直线l与x轴不垂直时,设直线l的方程为y=k(x-1).联立
x2+2y2=2
y=k(x-1)
,可得(1+2k2)x2-4k2x+2k2-2=0;表示出两根之和、之积;又由y1=k(x1-1),y2=k(x2-1);可得y1y2=
-k2
1+2k2

根据矩形的性质,结合向量的数量积的运算,可得k2=2,可得k的值,进而可得直线的方程.
解答:解:(1)由已知,椭圆方程可设为
x2
a2
+
y2
b2
=1(a>b>0)

∵长轴长为2
2
,离心率e=
2
2

b=c=1 , a=
2

所求椭圆方程为
x2
2
+y2=1

(2)因为直线l过椭圆右焦点F(1,0),且斜率为1,所以直线l的方程为y=x-1.
设P(x1,y1),Q(x2,y2),
x2+2y2=2
y=x-1
得3y2+2y-1=0,解得y1=-1,y2=
1
3

S△POQ=
1
2
|OF|•|y1-y2|=
1
2
|y1-y2|=
2
3

(3)当直线l与x轴垂直时,直线l的方程为x=1,此时∠POQ小于90°,OP,OQ为邻边的平行四边形不可能是矩形.
当直线l与x轴不垂直时,设直线l的方程为y=k(x-1).
x2+2y2=2
y=k(x-1)
可得(1+2k2)x2-4k2x+2k2-2=0.
x1+x2=
4k2
1+2k2
x1x2=
2k2-2
1+2k2

∵y1=k(x1-1),y2=k(x2-1)
y1y2=
-k2
1+2k2

因为以OP,OQ为邻边的平行四边形是矩形?
OP
OQ
=0

OP
OQ
=x1x2+y1y2=
2k2-2
1+2k2
+
-k2
1+2k2
=0
得k2=2,
k=±
2

∴所求直线的方程为y=±
2
(x-1)
点评:本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线的综合问题是支撑圆锥曲线知识体系的重点内容,问题的解决具有入口宽、方法灵活多样等,而不同的解题途径其运算量繁简差别很大,故此类问题能有效地考查考生分析问题、解决问题的能力,平时应作为重点来复习训练.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.
(1)求椭圆的方程;
(2)当直线l的斜率为1时,求△POQ的面积;
(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点,且经过点M(1,
2
5
5
)
,N(-2,
5
5
)
,若圆C的圆心与椭圆的右焦点重合,圆的半径恰好等于椭圆的短半轴长,已知点A(x,y)为圆C上的一点.
(1)求椭圆的标准方程和圆的标准方程;
(2)求
AC
AO
+2|
AC
-
AO
|
(O为坐标原点)的取值范围;
(3)求x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点,焦点在x轴上,椭圆上点P(3
2
,4)
到两焦点的距离之和是12,则椭圆的标准方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点,焦点在x轴上,焦距为6
3
,且椭圆上一点到两个焦点的距离之和为12,则椭圆的方程为
x2
36
+
y2
9
=1
x2
36
+
y2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为
2
2
,坐标原点O到过右焦点F且斜率为1的直线的距离为
2
2

(1)求椭圆的方程;
(2)设过右焦点F且与坐标轴不垂直的直线l交椭圆于P、Q两点,在线段OF上是否存在点M(m,0),使得以MP、MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案