精英家教网 > 高中数学 > 题目详情
设函数f(x)在x处可导,则等于( )
A.f′(x
B.f′(-x
C.-f′(x
D.-f(-x
【答案】分析:根据导数的几何意义,以及导数的极限表示形式f'(x)=进行化简变形,得到结论.
解答:解:=-=-f′(x),
故选C.
点评:本题考查了导数的几何意义,以及导数的极限表示形式,本题属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浙江)已知e为自然对数的底数,设函数f(x)=(ex-1)(x-1)k(k=1,2),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)设函数f(x)=
13
x3
-ax(a>0),g(x)=bx2+2b-1.
(Ⅰ)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;
(Ⅱ)当a=1-2b时,若函数f(x)+g(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(Ⅲ)当a=1-2b=1时,求函数f(x)+g(x)在区间[t,t+3]上的最大值.

查看答案和解析>>

科目:高中数学 来源:浙江 题型:单选题

已知e为自然对数的底数,设函数f(x)=(ex-1)(x-1)k(k=1,2),则(  )
A.当k=1时,f(x)在x=1处取得极小值
B.当k=1时,f(x)在x=1处取得极大值
C.当k=2时,f(x)在x=1处取得极小值
D.当k=2时,f(x)在x=1处取得极大值

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省济宁市梁山二中高二(下)期中数学试卷(理科)(解析版) 题型:选择题

设函数f(x)在x处可导,则的值为( )
A.
B.
C.2f'(x
D.-2f'(x

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省南京市金陵中学高三(上)期中数学试卷(解析版) 题型:解答题

设函数f(x)=p(x-)-2lnx,g(x)=.(p是实数,e是自然对数的底数)
(1)当p=2时,求与函数y=f(x)的图象在点A(1,0)处相切的切线方程;
(2)若f(x)在其定义域内为单调递增函数,求p的取值范围;
(3)若在[1,e]上至少存在一点xo,使得f(x)>g(x)成立,求p的取值范围.

查看答案和解析>>

同步练习册答案