精英家教网 > 高中数学 > 题目详情
(2012•江西模拟)已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.
(1)求实数m的值;
(2)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
.试用这个结论证明:若-1<x1<x2,函数g(x)=
f(x1)-f(x2)
x1-x2
(x-x1)+f(x1)
,则对任意x∈(x1,x2),都有f(x)>g(x);
(3)已知正数λ1,λ2,…,λn,满足λ12+…+λn=1,求证:当n≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,…,xn,都有f(λ1x12x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).
分析:(1)求导函数,利用当x=0时,函数f(x)取得极大值,即可求得实数m的值;
(2)令h(x)=f(x)-g(x)=f(x)-
f(x1)-f(x2)
x1-x2
(x-x1)-f(x1)
,则h′(x)=f′(x)-
f(x1)-f(x2)
x1-x2
,根据函数f(x)在x∈(x1,x2)上可导,可得存在x0∈(x1,x2),使得f′(x0)=
f(x1)-f(x2)
x1-x2
,从而h′(x)=f′(x)-f′(x0)=
1
x+1
-
1
x0+1
=
x0-x
(x+1)(x0+1)
,进而可得h(x)>0;
(3)用数学归纳法证明,先证明当n=2时,结论成立;再证明假设当n=k(k≥2)时结论成立,利用归纳假设证明当n=k+1时,结论也成立.
解答:(1)解:求导函数f′(x)=
1
x+1
+m

∵当x=0时,函数f(x)取得极大值
∴f'(0)=0,得m=-1,此时f′(x)=-
x
x+1

当x∈(-1,0)时,f'(x)>0,函数f(x)在区间(-1,0)上单调递增;
当x∈(0,+∞)时,f'(x)<0,函数f(x)在区间(0,+∞)上单调递减.
∴函数f(x)在x=0处取得极大值,故m=-1.…(3分)
(2)证明:令h(x)=f(x)-g(x)=f(x)-
f(x1)-f(x2)
x1-x2
(x-x1)-f(x1)
,…(4分)
h′(x)=f′(x)-
f(x1)-f(x2)
x1-x2

∵函数f(x)在x∈(x1,x2)上可导,
∴存在x0∈(x1,x2),使得f′(x0)=
f(x1)-f(x2)
x1-x2

f′(x)=
1
x+1
-1

h′(x)=f′(x)-f′(x0)=
1
x+1
-
1
x0+1
=
x0-x
(x+1)(x0+1)

∵当x∈(x1,x0)时,h'(x)>0,h(x)单调递增,∴h(x)>h(x1)=0;
∵当x∈(x0,x2)时,h'(x)<0,h(x)单调递减,∴h(x)>h(x2)=0;
故对任意x∈(x1,x2),都有f(x)>g(x).…(8分)
(3)证明:用数学归纳法证明.
①当n=2时,∵λ12=1,且λ1>0,λ2>0,∴λ1x12x2∈(x1,x2),∴由(Ⅱ)得f(x)>g(x),
f(λ1x1+λ2x2)>
f(x1)-f(x2)
x1-x2
(λ1x1+λ2x2-x1)+f(x1)=λ1f(x1)+λ2f(x2)

∴当n=2时,结论成立.…(9分)
②假设当n=k(k≥2)时结论成立,即当λ12+…+λk=1时,f(λ1x12x2+…+λkxk)>λ1f(x1)+λ2f(x2)+…+λkf(xk).
当n=k+1时,设正数λ1,λ2,…,λk+1满足λ12+…+λk+1=1,
令m=λ12+…+λkμ1=
λ1
m
μ2=
λ2
m
,…,μk=
λk
m
,则m+λk+1n=1,且μ12+…+μk=1.
f(λ1x12x2+…+λkxkk+1xk+1)=f[m(μ1x1+…+μkxk)+λk+1xk+1]>mf(μ1x1+…+μkxk)+λk+1f(xk+1)>mμ1f(x1)+…+mμkf(xk)+λk+1f(xk+1)=λ1f(x1)+…+λkf(xk)+λk+1f(xk+1)…(13分)
∴当n=k+1时,结论也成立.
综上由①②,对任意n≥2,n∈N,结论恒成立.…(14分)
点评:本题考查导数知识的运用,考查数学归纳法证明不等式,解题的关键是利用函数的极值点处导数为0,利用数学归纳法的证题步骤进行证明,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,面SAB⊥面ABC,则棱锥S-ABC的体积的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若c
AC
+a
PA
+b
PB
=
0
,则△ABC的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知数列{an}是各项均不为0的等差数列,公差为d,Sn 为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=
1anan+1
,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式和Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn,成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,将函数f(x)向左平移
π
6
个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐进线的交点分别为B、C.若
AB
=
1
2
BC
,则双曲线的离心率是
5
5

查看答案和解析>>

同步练习册答案