精英家教网 > 高中数学 > 题目详情

求函数y=lnx+2x-6的零点个数.

只有一个零点


解析:

在同一坐标系画出y=lnx与y=6-2x的图象,由图可知两图象只有一个交点,

故函数y=lnx+2x-6只有一个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把函数y=lnx-2的图象按向量
a
=(-1,2)
平移得到函数y=f(x)的图象.
(I)若x>0,试比较f(x)与
2x
x+2
的大小,并说明理由;
(II)若不等式
1
2
x2≤f(x2)+m2-2bm-3
.当x,b∈[-1,1]时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=lnx-2的图象按向量
α
=(-1,2)平移得到函数y=f(x)的图象.
(1)若x>0,证明;f(x)>
2x
x+2

(2不等式
1
2
x2≤f(x2)+m2-2bm-3对b∈[-1,1],x∈[-1,1]时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

把函数y=lnx-2的图象按向量数学公式=(-1,2)平移得到函数y=f(x)的图象.
(1)若x>0,证明;f(x)>数学公式
(2不等式数学公式x2≤f(x2)+m2-2bm-3对b∈[-1,1],x∈[-1,1]时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=lnx-2的图像按向量a=(-1,2)平移得到函数y=f(x)的图像.

(Ⅰ)若x>0,证明:f(x)>

(Ⅱ)若不等式x2≤f(x2)+m2-2bm-3时x∈[-1,1]和b∈[-1,1]都恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年黄冈中学河南学校高三(上)第一次调研数学试卷(解析版) 题型:解答题

把函数y=lnx-2的图象按向量=(-1,2)平移得到函数y=f(x)的图象.
(1)若x>0,证明;f(x)>
(2不等式x2≤f(x2)+m2-2bm-3对b∈[-1,1],x∈[-1,1]时恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案