精英家教网 > 高中数学 > 题目详情
已知m∈R,设P:不等式m2+16≤10m;Q:函数f(x)=3x2+2mx+m+
43
有两个不同的零点,求使“P∧Q”为真命题的实数m的取值范围.
分析:若使“P∧Q”为真命题,则P,Q都是真命题,则只要分别求出P,Q所对应的m的范围,即可求解
解答:解:∵m2+16≤10m
∴m2-10m+16≤0,解不等式可得,2≤m≤8
∴P:2≤m≤8
∵函数f(x)=3x2+2mx+m+
4
3
有两个不同的零点,
△=4m2-12(m+
4
3
)>0

解不等式可得,m>4或m<-1
即Q:m>4或m<-1
若使“P∧Q”为真命题,则P,Q都是真命题
2≤m≤8
m>4或m<-1

∴实数m的取值范围是4<m≤8
点评:本题主要考查了P且Q复合命题的真假关系的应用,解题的关键是利用不等式及函数的知识求解出M,Q都为真命题的范围
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
ax2+bx(a≠0)

(1)若a=-2时,h(x)=f(x)-g(x)在其定义域内单调递增,求b的取值范围;
(2)设函数f(x)的图象C1与函数g(x)的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M,N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求R的横坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B分别是直线y=
3
3
x
y=-
3
3
x
上的两个动点,线段AB的长为2
3
,P是AB的中点.
(1)求动点P的轨迹C的方程;
(2)过点Q(1,0)任意作直线l(与x轴不垂直),设l与(1)中轨迹C交于M、N,与y轴交于R点.若
RM
MQ
RN
NQ
,证明:λ+μ 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知h(x)是指数函数,且过点(ln2,2),令f(x)=h(x)+ax.
(I)求f(x)的单调区间;
(II)记不等式h(x)<(1-a)x的解集为P,若M={x|
12
≤x≤2}
且M∪P=P,求实数a的取值范围;
(III)当a=-1时,设g(x)=h(x)lnx,问是否存在x0∈(0,+∞),使曲线C:y=g(x)-f(x)在点x0处的切线斜率与f(x)在R上的最小值相等?若存在,求出符合条件的x0的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,设p:复数z1=(m-1)+(m+3)i (i是虚数单位)在复平面内对应的点在第二象限,q:复数z2=1+(m-2)i的模不超过
10

(1)当p为真命题时,求m的取值范围;
(2)若命题“p且q”为假命题,“p或q”为真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年北京市崇文区高二(上)期末数学试卷(理科)(解析版) 题型:解答题

已知点,动圆P经过点F,与直线x=-相切,设动圆的圆心P的轨迹为曲线W,且直线x-y=m与曲线W相交于A(x1,y1),B(x2,y2)两点,O为坐标原点.
(1)求曲线W的方程;
(2)当m=2时,证明:OA⊥OB;
(3)当y1y2=-2m时,是否存在m∈R,使得=-1?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案