精英家教网 > 高中数学 > 题目详情
3.设函数f(x)=1+sin2x,则等于$\lim_{△x→0}\frac{{f({△x})-f(0)}}{△x}$(  )
A.-2B.0C.3D.2

分析 利用导数的定义,即可得出结论.

解答 解:∵f′(x)=2cos2x,∴$\lim_{△x→0}\frac{{f({△x})-f(0)}}{△x}=\lim_{△x→0}\frac{{f({0+△x})-f(0)}}{△x}=f′(0)=2$.
故选:D.

点评 本题考查导数的定义,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足:Sn+1•Sn=an+1,又${a_1}=\frac{2}{9}$,
(1)求证:数列$\{\frac{1}{S_n}\}$为等差数列;
(2)求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.要得到函数$y=\sqrt{2}sinx$的图象,只需将函数$y=\sqrt{2}cos(2x-\frac{π}{4})$的图象上所有的点(  )
A.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动$\frac{π}{8}$个单位长度
B.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动$\frac{π}{4}$个单位长度
C.横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向右平行移动$\frac{π}{4}$个单位长度
D.横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平行移动$\frac{π}{8}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=sinx+sin|x|在区间[-π,π]上的值域为(  )
A.[-1,1]B.[0,2]C.[-2,2]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=|\overrightarrow{MP}-x\overrightarrow{MN}|(x∈R)$,其中MN是半径为4的圆O的一条弦,P为单位圆O上的点,设函数f(x)的最小值为t,当点P在单位圆上运动时,t的最大值为3,则线段MN的长度为(  )
A.$4\sqrt{3}$B.$2\sqrt{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\overrightarrow a,\overrightarrow b$为非零向量,$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}|$,则(  )
A.$\overrightarrow a∥\overrightarrow b$,且$\overrightarrow a与\overrightarrow b$方向相同B.$\overrightarrow a与\overrightarrow b$是方向相反的向量
C.$\overrightarrow a=-\overrightarrow b$D.$\overrightarrow a,\overrightarrow b$无论什么关系均可

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x-1)-alnx(x>0).
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若f(x)≥0对x∈[1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=(  )
A.B.{2}C.{2,5}D.[2,$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.方程$\frac{{x}^{2}}{2sinθ+4}$+$\frac{{y}^{2}}{sinθ-3}$=1(θ∈R)所表示的曲线是(  )
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线D.焦点在y轴上的双曲线

查看答案和解析>>

同步练习册答案