精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的一个顶点为A(0,﹣1),焦点在x轴上.若右焦点到直线x﹣y+2 =0的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M、N.当|AM|=|AN|时,求m的取值范围.

【答案】
(1)解:依题意可设椭圆方程为

则右焦点F( )由题设

解得a2=3故所求椭圆的方程为


(2)解:设P为弦MN的中点,由

得(3k2+1)x2+6mkx+3(m2﹣1)=0

由于直线与椭圆有两个交点,∴△>0,即m2<3k2+1①

从而

又|AM|=||AN|,∴AP⊥MN,

即2m=3k2+1②

把②代入①得2m>m2解得0<m<2由②得 解得

故所求m的取范围是( ).


【解析】(1)依题意可设椭圆方程为 ,由题设 解得a2=3,故所求椭圆的方程为 .(2)设P为弦MN的中点,由 得(3k2+1)x2+6mkx+3(m2﹣1)=0,由于直线与椭圆有两个交点,∴△>0,即m2<3k2+1.由此可推导出m的取值范围.
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式ax2+bx+3>0的解集为(﹣1,3).
(1)求实数a,b的值;
(2)解不等式x2+a|x﹣2|﹣8<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,A(2,4),B(﹣1,2),C,D为动点,
(1)若C(3,1),求平行四边形ABCD的两条对角线的长度
(2)若C(a,b),且 ,求 取得最小值时a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的程序框图表示的算法中,输入三个实数a,b,c,要求输出的x是这三个数中最大的数,那么在空白的判断框中,应该填入(

A.x>c
B.c>x
C.c>b
D.c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}和等比数列{bn},其中{an}的公差不为0.设Sn是数列{an}的前n项和.若a1 , a2 , a5是数列{bn}的前3项,且S4=16.
(1)求数列{an}和{bn}的通项公式;
(2)若数列{ }为等差数列,求实数t;
(3)构造数列a1 , b1 , a2 , b1 , b2 , a3 , b1 , b2 , b3 , …,ak , b1 , b2 , …,bk , …,若该数列前n项和Tn=1821,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1的左右焦点分别为F1 , F2 , 则在椭圆C上满足∠F1PF2= 的点P的个数有(
A.0个
B.1个
C.2 个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.

(1)证明:B1M⊥平面ABM;
(2)求异面直线A1M和C1D1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(1, )是函数f(x)= ax(a>0,a≠1)图象上一点,等比数列{an}的前n项和为c﹣f(n).数列{bn}(bn>0)的首项为2c,前n项和满足 = +1(n≥2). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{ }的前n项和为Tn , 问使Tn 的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥 中,底面ABCD是直角梯形, ,平面 底面ABCD, O为AD的中点, M是棱PC上的点, AD=2AB.

(1)求证:平面 平面PAD;
(2)若 平面BMO,求 的值.

查看答案和解析>>

同步练习册答案