精英家教网 > 高中数学 > 题目详情

【题目】给定两个命题,P:对任意实数x都有ax2+ax+10恒成立;Q:关于x的方程x2﹣x+a=0有实数根;如果PQ中有且仅有一个为真命题,求实数a的取值范围.

【答案】

【解析】试题分析:本题以命题的形式考察了一元二次不等式与其方程实根的问题,命题是真命题,即a0,若命题是真命题,,若仅有一个为真命题,即一真一假,所以分别计算假,或真的不等式,求的取值范围.

试题解析:对任意实数x都有ax2ax10恒成立a00≤a4

关于x的方程x2xa0有实数根14a≥0a≤

如果p真,且q假,有0≤a4,且aa4

如果q真,且p假,有a0a≥4,且a≤∴a0.

综上,实数a的取值范围为(-0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=sin2(π+x)﹣cos(2π﹣x)+a
(1)求f(x)的值域
(2)若f(x)在(0, )内有零点,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosωxsin(ωx+ )(ω>0)的最小正周期为π.
(1)求ω的值;
(2)讨论f(x)在区间[0, ]上的单调性;
(3)当x∈[0, ]时,关于x的方程f(x)=a 恰有两个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinx(sinx+ cosx)﹣1(其中x∈R),求:
(1)函数f(x)的最小正周期;
(2)函数f(x)的单调减区间;
(3)函数f(x)图象的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6名选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如图所示的茎叶图,为了增加结果的神秘感,主持人故意没有给出甲、乙两班最后一位选手的成绩,只是告诉大家,如果某位选手的成绩高于90分(不含90分),则直接“晋级”.

(1)求乙班总分超过甲班的概率;

(2)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分.若主持人从甲乙两班所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若过点M(2,0)的直线与椭圆C相交于两点A,B,当时,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面,四边形是菱形, ,且 交于点 上任意一点.

(1)求证:

(2)已知二面角的余弦值为,若的中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1,an+1=2an+2n
(1)设bn= ,证明:数列{bn}是等差数列.
(2)求数列{an}的前n项和.

查看答案和解析>>

同步练习册答案