【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中的值;
(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;
(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.
科目:高中数学 来源: 题型:
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(I)求直方图中的值;
(II)求月平均用电量的众数和中位数;
(III)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知过点的直线的参数方程是(为参数).以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程式为.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)若直线与曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点的椭圆经过点,且点为其右焦点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在平行于的直线,使得直线与椭圆有公共点,且直线与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为且满足,数列中,对任意正整数
(1)求数列的通项公式;
(2)是否存在实数,使得数列是等比数列?若存在,请求出实数及公比的值,若不存在,请说明理由;
(3)求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数);在以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(I)求曲线的极坐标方程和曲线的直角坐标方程;
(II)若射线与曲线,的交点分别为(异于原点),当斜率时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆与直线相切.
(1)求圆的方程;
(2)过点的直线截圆所得弦长为,求直线的方程;
(3)设圆与轴的负半抽的交点为,过点作两条斜率分别为的直线交圆于两点,且,证明:直线过定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通常表明地震能量大小的尺度是里氏震级,其计算公式为:,其中,是被测地震的最大振幅,是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差)。
(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是30,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);
(2)5级地震给人的震感已比较明显,计算8级地震的最大振幅是5级地震的最大振幅的多少倍?
(以下数据供参考:, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱锥P-ABC中,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且△PDB是正三角形,PA⊥PC。
.
(1)求证:DM∥平面PAC;
(2)求证:平面PAC⊥平面ABC;
(3)求三棱锥M-BCD的体积
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com