精英家教网 > 高中数学 > 题目详情
(2013•江西)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧
FG
的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是(  )
分析:由题意可知:随着l从l1平行移动到l2,y=EB+BC+CD越来越大,考察几个特殊的情况,计算出相应的函数值y,结合考查选项可得答案.
解答:解:当x=0时,y=EB+BC+CD=BC=
2
3
3

当x=π时,此时y=AB+BC+CA=3×
2
3
3
=2
3

当x=
π
3
时,∠FOG=
π
3
,三角形OFG为正三角形,此时AM=OH=
3
2

在正△AED中,AE=ED=DA=1,
∴y=EB+BC+CD=AB+BC+CA-(AE+AD)=3×
2
3
3
-2×1=2
3
-2.如图.
又当x=
π
3
时,图中y0=
2
3
3
+
1
3
(2
3
-
2
3
3
)=
10
3
9
>2
3
-2.
故当x=
π
3
时,对应的点(x,y)在图中红色连线段的下方,对照选项,D正确.
故选D.
点评:本题考查函数的图象,注意理解图象的变化趋势是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•江西)如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=
2
,AA1=3,E为CD上一点,DE=1,EC=3
(1)证明:BE⊥平面BB1C1C;
(2)求点B1到平面EA1C1 的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江西)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江西)如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=
32
,连接CE并延长交AD于F
(1)求证:AD⊥平面CFG;
(2)求平面BCP与平面DCP的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江西)如图.已知l1⊥l2,圆心在l1上、半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为(  )

查看答案和解析>>

同步练习册答案