精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD是正方形,MA⊥平面ABCD,MA∥PB,PB=AB=2MA=2.
(1)求证:DM∥面PBC;
(2)求证:面PBD⊥面PAC.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(1)平面AMD内的直线MA,平行平面BPC内的直线PB,证明平面AMD∥平面BPC,再证明DM∥面PBC;
(2)证明PB⊥平面ABCD、AC⊥平面PBD,即可证明面PBD⊥面PAC.
解答: 证明:(1)因为PB⊥平面ABCD,MA⊥平面ABCD,所以PB∥MA.因PB?平面BPC,MA不在平面BPC内,所以MA∥平面BPC.同理DA∥平面BPC,因为MA?平面AMD,AD?平面AMD,MA∩AD=A,所以平面AMD∥平面BPC,
因为DM?平面AMD,
所以DM∥面PBC;
(2)因为PB∥MA,MA⊥平面ABCD,
所以PB⊥平面ABCD,
所以PB⊥AC,
因为AC⊥BD,PB∩BD=B,
所以AC⊥平面PBD,
因为AC?面PAC,
所以面PBD⊥面PAC.
点评:本题考查平面与平面垂直的判定,平面与平面平行的判定,考查空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x3-(
1
2
x的零点个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:|x+2|-|2x-5|>a+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,异面直线A1B与AC所成的角是
 
°.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD中点,M是棱PC上的点,PD=PA=2,BC=
1
2
AD=1,CD=
3

(1)若点M是棱PC的中点,求证:PA∥平面BMQ;
(2)求证:平面PQB⊥底面PAD;
(3)(仅理科做)若PM=3MC,求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,则折起后形成的三棱锥D-ABC的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①函数y=lg(x2-ax-a)的值域为R,则a∈(-4,0);
②O是△ABC所在平面上一定点,动点P满足
OP
=
OA
+λ(
AB
+
AC
)
且λ∈[0,+∞),则P的轨迹一定经过△ABC的重心;
③△ABC中,角A,B,C所对的边分别为a,b,c,若acosA=bcosB,则△ABC是等腰三角形;
④若函数f(x)=x+log2(x+
x2+1
),则“m+n≥0”是“f(m)+f(n)≥0”的充要条件.其中所有正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一几何体的直观图如图所示:
(1)画出该几何体的三视图.
(2)求该几何体的表面积与体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(-2,4)且在两坐标轴上截距的绝对值相等的直线有(  )
A、1条B、2条C、3条D、4条

查看答案和解析>>

同步练习册答案