精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=|x-2|.
(1)若对任意的a,b,c∈R(a≠c),不等式$\frac{1}{2}$f(m)≤$\frac{|a-b|+|c-d|}{|a-c|}$恒成立,求实数m的最大值;
(2)在(1)的条件下,解不等式f(x)≤2-|x-m|.

分析 (1)由绝对值不等式可得$\frac{|a-b|+|c-d|}{|a-c|}$≥1,由不等式$\frac{1}{2}$f(m)≤$\frac{|a-b|+|c-d|}{|a-c|}$恒成立可得$\frac{1}{2}|m-2|≤1$,解绝对值不等式可得实数m的最大值为4;
(2)把m=4代入不等式f(x)≤2-|x-m|,得到|x-2|+|x-4|≤2,结合|x-2|+|x-4|≥|(x-2)-(x-4)|=2,可得|x-2|+|x-4|=2,由绝对值的几何意义得答案.

解答 解:(1)由$\frac{|a-b|+|c-d|}{|a-c|}$≥$\frac{|(a-b)-(c-b)|}{|a-c|}=1$,
∴$\frac{1}{2}$f(m)≤$\frac{|a-b|+|c-d|}{|a-c|}$恒成立?$\frac{1}{2}|m-2|≤1$⇒0≤m≤4,
∴实数m的最大值为4;
(2)f(x)≤2-|x-m|?|x-2|≤2-|x-4|.
即|x-2|+|x-4|≤2,
∵|x-2|+|x-4|≥|(x-2)-(x-4)|=2,
∴|x-2|+|x-4|=2,
由绝对值的几何意义可得:{x|2≤x≤4}.

点评 本题考查函数恒成立问题,考查了绝对值不等式的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若函数y=2sinωx(ω>0)在区间(-$\frac{π}{6}$,$\frac{π}{3}$)上只有一个极值点,则ω的取值范围是(  )
A.1≤ω≤$\frac{3}{2}$B.$\frac{3}{2}$<ω≤3C.3≤ω<4D.$\frac{3}{2}$≤ω<$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=1g(arcsin$\frac{x}{10}$),则f(x)的定义域为(0,10].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的函数f(x)是奇函数,且x≥0时,f(x)=$\frac{1}{2^x}$+a,则f(-1)=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=x+$\frac{|2x|}{2x}$的图象是图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,以Ox轴为始边,作两个角α,β,它们终边分别经过点P,Q,其中$P(\frac{1}{2},{cos^2}θ)$,Q(sin2θ,-1),θ∈R,且$sinα=\frac{4}{5}$.
(1)求cos2θ的值;
(2)求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知方程x2+(4+i)x+4+ai=0(a∈R)有实根b,且z=a+bi,则复数z的共轭复数等于(  )
A.2-2iB.2+2iC.-2+2iD.-2-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设m、n是两条不同的直线,α、β是两个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若m∥n,n∥α,则m∥α;③若m∥n,n⊥β,m∥α,则α⊥β;④若m∩n=A,m∥α,m∥β,n∥α,n∥β,则α∥β.其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC的内角A,B,C的对边分别为a,b,c,且(2a-c)cosB=bcosC.
(1)求sinB的值;
(2)若$b=\sqrt{7}$,求△ABC的周长的最大值.

查看答案和解析>>

同步练习册答案